Клинико-патогенетические характеристики диарейного синдрома при COVID-19 у детей

 $C.B. Xалиуллина^1, B.A. Поздняк^1, B.A. Анохин^1, X.C. Хаертынов^1, Г.М. Курбанова^2, А.М. Закирова^1$

¹ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России, Казань, Россия; ²ГАУЗ «Республиканская клиническая инфекционная больница им. профессора А.Ф. Агафонова» Минздрава Республики Татарстан, Казань, Россия

Clinical and pathogenetic features of diarrheal syndrome in COVID-19 in children

S.V. Khaliullina¹, V.A. Pozdniak¹, V.A. Anokhin¹, Kh.S. Khaertynov¹, G.M. Kurbanova², A.M. Zakirova¹

¹Kazan State Medical University, Kazan, Russia:

Известно, что SARS-CoV-2 способен поражать желудочно-кишечный тракт, вызывая различные симптомы. Практика показывает, что клинические проявления диарейного синдрома при COVID-19 не укладываются в классические проявления осмотической диареи. Нередко регистрируются случаи поражения нижних отделов кишечника.

Цель исследования. Оценка особенностей клинических проявлений и лабораторных показателей диарейного синдрома для определения возможного механизма поражения желудочно-кишечного тракта у детей с COVID-19.

Материалы и методы. На базе РКИБ г. Казани обследованы 80 пациентов: 40 отобраны в основную группу с диареей и подтвержденным диагнозом «COVID-19», 40— в контрольную группу с рота- или норовирусной инфекцией. Обследование включало ежедневный осмотр, лабораторные исследования для оценки клинических особенностей течения, этиологической расшифровки, изучения патофизиологических механизмов диареи при COVID-19.

Результаты. COVID-19 отличается от классических вирусных диарей более выраженным катарально-респираторным синдромом (p<0,001), пиретической лихорадкой (p=0,001). Рвота больше характерна для рота- и норовирусных инфекций (p<0,001). SARS-CoV-2 достоверно чаще вызывает клиническую картину дистального колита (p=0,034). Пациентов с повышенным уровнем углеводов в кале наблюдали чаще в группе вирусных диарей, а кальпротектина — в группе COVID-19 (p<0,05). Выраженное нарушение качественного и количественного состава кишечной микрофлоры более характерно для пациентов, инфицированных SARS-CoV-2.

Заключение. Полученные результаты позволяют предполагать сложный генез поражения желудочно-кишечного тракта у детей с COVID-19, который включает признаки как осмотического, так и экссудативного (инвазивного) механизма образования диареи. Очевидно, что поражение желудочно-кишечного тракта при COVID-19 — многофакторный процесс.

Ключевые слова: дети, диарея, COVID-19, ротавирусный гастроэнтерит.

Для цитирования: Халиуллина С.В., Поздняк В.А., Анохин В.А., Хаертынов Х.С., Курбанова Г.М., Закирова А.М. Клинико-пато-генетические характеристики диарейного синдрома при COVID-19 у детей. Рос вестн перинатол и педиатр 2023; 68:(5): 30–36. DOI: 10.21508/1027-4065-2023-68-5-30-36

SARS-CoV-2 is known to be able to infect the gastrointestinal tract, causing a variety of symptoms. Practice shows that the clinical presentation of diarrheal syndrome with COVID-19 does not fit into the classic manifestations of osmotic diarrhea. Cases of lesions of the lower intestine are often reported.

Purpose. The study aims at evaluation of the features of clinical manifestations and laboratory parameters of diarrheal syndrome to determine the possible mechanism of gastrointestinal damage in children with COVID-19.

Material and methods. 80 subjects were examined on the basis of the Kazan Regional Clinical Hospital. 40 patients were selected for the main group with diarrhea and a confirmed diagnosis of COVID-19, 40 for the control group with rota- or norovirus infection. The examination included a daily examination, laboratory tests to assess the clinical features of the course, etiological decoding, study of the pathogenetic mechanisms of diarrhea in COVID-19.

Results. COVID-19 differs from classical viral diarrhea in more pronounced catarrhal respiratory syndrome (p<0.001), pyretic fever (p=0.001). Vomiting is more typical for rota- and norovirus infections (p<0.001). SARS-CoV-2 is statistically significantly more likely to cause clinical scenario of distal colitis (p=0.034). Patients with increased levels of carbohydrates in the feces were observed more often in the viral diarrhea group, and calprotectin — in the COVID-19 group (p<0.05). A significant qualitative and quantitative imbalance of the intestinal microflora is more typical for patients infected with SARS-CoV-2.

Conclusion. The conducted study suggests a complex genesis of gastrointestinal lesions in children with COVID-19, which includes signs of both osmotic and exudative (invasive) mechanisms of diarrhea formation. Clearly, GI lesion in COVID-19 is a multifactorial process.

Key words: children, diarrhea, COVID-19, rotavirus gastroenteritis.

For citation: Khaliullina S.V., Pozdniak V.A., Anokhin V.A., Khaertynov Kh.S., Kurbanova G.M., Zakirova A.M. Clinical and pathogenetic features of diarrheal syndrome in COVID-19 in children. Ros Vestn Perinatol i Pediatr 2023; 68:(5): 30–36 (in Russ). DOI: 10.21508/1027-4065-2023-68-5-30-36

Традиционно считается, что мишенью респираторных вирусов, в том числе нового варианта коронавируса, служат органы дыхания. Вместе с тем накопленный в отношении SARS-CoV-2 опыт показал, что это не всегда. Патогенез COVID-19, связанный с участием главной мишени вируса — рецептора ангиотензинпревращающего фермента 2-го типа

(АПФ-2) — белка, который экспрессируется различными клетками организма человека, предполагает развитие широкого спектра поражений. Рецептор АПФ-2 широко представлен в клетках верхних и нижних дыхательных путей, меньше — в миокарде, почечном эпителии, эпителии печени и желчевыводящих путей, в эндотелиальных клетках. Наибольшее

²Agafonov Republican Clinical Infectious Diseases Hospital, Kazan, Russia

количество рецепторов находится на поверхности эпителия желудка, двенадцатиперстной, подвздошной и прямой кишок; так, например, его концентрация в 100 раз выше, чем в легких [1]. Поражение вирусом желудочно-кишечного тракта доказано и при гистологических исследованиях: в биоптатах ткани кишечника инфицированных пациентов обнаружены как вирусные нуклеокапсидные белки, так и сами вирусные частицы [2]. W. Wang и соавт. [3] в 2020 г. смогли обнаружить в кале пациентов живой вирус. PHK SARS-CoV-2 в кале обнаруживается более чем у 50% больных COVID-19 [4]. Результаты компьютерной томографии свидетельствовали об изменениях стенки кишечника у 31% пациентов с COVID-19 [5].

Частота регистрации гастроэнтерологической симптоматики при коронавирусной инфекции, обусловленной SARS-CoV-2, по разным оценкам может составлять от 2 до 60% случаев [1—6]. У детей клиническая картина поражения желудочно-кишечного тракта схожа с таковой во взрослой популяции [4, 6, 7]. Клинические проявления поражения желудочно-кишечного тракта при COVID-19 в целом описаны достаточно подробно и включают диарею, тошноту, рвоту и боль в животе. При этом выявляются некоторые различия в разных возрастных группах, в зависимости от циркулирующего в период наблюдения штамма SARS-CoV-2, тяжести заболевания, выбора терапии и др.

С учетом того, что COVID-19 — вирусная инфекция, вполне ожидаемо, что варианты поражения желудочно-кишечного тракта должны соответствовать другим вирусным диареям, для которых характерно развитие клинической картины гастроэнтерита. Однако изученные особенности патогенеза, накопленный по данным литературы опыт и собственные наблюдения указывают на возможную заинтересованность нижних отделов желудочно-кишечного тракта в отличие, например, от преимущественного поражения только желудка и тонкой кишки при рота- или норовирусных инфекциях [1, 5, 6].

Цель исследования: оценка особенностей клинических проявлений и лабораторных показателей диарейного синдрома для определения возможного механизма поражения желудочно-кишечного тракта у детей с COVID-19.

© Коллектив авторов, 2023

Адрес для корреспонденции: Халиуллина Светлана Викторовна — д.м.н., проф. кафедры детских инфекций Казанского государственного медицинского университета, ORCID: 0000-0001-7763-5512

e-mail: svekhal@mail.ru

Поздняк Валерий Александрович — асп. кафедры детских инфекций Казанского государственного медицинского университета,

ORCID: 0000-0002-7853-3312

Анохин Владимир Алексеевич — д.м.н., проф., зав. кафедрой детских инфекций Казанского государственного медицинского университета,

ORCID: 0000-0003-1050-9081

Характеристика детей и методы исследования

В период с октября 2022 г. по май 2023 г. на базе Республиканской клинической инфекционной больницы им. проф. А.Ф. Агафонова (Казань) проведено перекрестное исследование. Перед началом работы мы провели пилотное исследование с оценкой возрастной структуры госпитализированных детей с изучаемой патологией для формирования адекватной выборки. Это связано с тем, что по результатам собственных наблюдений и по данным литературы, возраст детей, госпитализированных с клиническими произнаками COVID-19 и традиционных вирусных диарей, существенно различался [6, 7]. Действительно, при случайном отборе пациентов в группы они оказались несопоставимы по возрасту. Дети, инфицированные SARS-CoV-2, были значительно младше (p < 0.001). На основании этого было принято решение при отборе детей в контрольную группу (с лабораторно доказанным диагнозом рота- или норовирусной диареи) дополнительно учитывать возраст. Таким образом, способ отбора детей в группу с вирусными диареями был схож с методологией отбора «контролей» в исследовании случай-контроль: каждому пациенту в основной группе подбирали соответствующую по возрасту пару в контрольной. Всего были отобраны 80 больных: 40 составили основную группу с диареей и подтвержденным диагнозом COVID-19, 40 вошли в контрольную группу с рота- или норовирусной инфекцией. Критерии включения: возраст младше 18 лет, отсутствие необходимости в интенсивной терапии. Критерии отказа от включения: тяжелые сопутствующие заболевания, хронические заболевания желудочно-кишечного тракта.

Наблюдение пациентов осуществляли в течение всего срока пребывания в стационаре. Обследование включало ежедневный осмотр, лабораторные исследования: общеклинический анализ крови, общий анализ мочи, копроцитограмму, биохимический анализ крови (определение уровня общего белка, глюкозы, аланини аспартатаминотрансферазы, С-реактивного белка, уровня лактата), определение кислотно-основного состояния (рН, ВЕ) и уровня электролитов (Na, K). Для верификации этиологии заболевания, используя смыв из носоглотки и кал, определяли ДНК/РНК, антигены возбудителей СОVID-19 и острых кишечных инфекций методом полимеразной цепной реак-

Хаертынов Халит Саубанович — д.м.н., доц. кафедры детских инфекций Казанского государственного медицинского университета.

ORCID: 0000-0002-9013-4402

Закирова Альфия Мидхатовна — к.м.н., доц. кафедры пропедевтики детских болезней и факультетской педиатрии Казанского государственного медицинского университета, ORCID: 0000-0003-2976-0807

420012 Казань, ул. Бутлерова, д. 49

Курбанова Гюзаль Махмудовна — врач-инфекционист, зав. отделением №13 Республиканской инфекционной больницы им. проф. А.Ф. Агафонова, ORCID: 0000-0002-1215-2250

420110 Казань, Проспект Победы, д. 83

ОРИГИНАЛЬНЫЕ СТАТЬИ

Таблица 1. Клинические характеристики пациентов с COVID-19 и рота/норовирусными инфекциями Table 1. Clinical characteristics of patients with COVID-19 and rota/norovirus infections

Признак	Возбудитель ОКИ		
	SARS-CoV-2 n=40	PB/HB n=40 (37/3)	p
Число девочек, п (%)	14 (35)	15 (37,5)	0,816
Средний возраст, мес (Ме [МКР]	4,5 [2; 10]	6,5 [3; 13]	0,504
Дети до года, <i>n</i> (%)	31 (77,5)	31 (77,5)	
Дети 1-5 лет, n (%)	6 (15)	6 (15)	
Масса тела, кг (<i>Me</i> [MKP])	8 [5,8; 10,1]	8,1 [6,8; 10,5]	0,761
Легкая БЭН (гипотрофия 1-й, 2-й степени), n (%)	4 (10)	10 (25)	0,069
День болезни на момент госпитализации (<i>Me</i> [MKP])	2 [2; 5]	2 [1; 3]	0,861
Продолжительность пребывания в стационаре, дни (Me [MKP])	5 [4,5; 6]	5 [4; 6]	0,842
Форма тяжести, n (%)			
легкая	-	1 (2,5)	
среднетяжелая	37 (92,5)	38 (95)	0,644
тяжелая	3 (7,5)	1 (2,5)	0,304
Катаральный синдром, n (%)	26 (65)	5 (12,5)	<0,001
Респираторный синдром (кашель), n (%)	29 (72,5)	3 (7,5)	<0,001
Уровень поражения ЖКТ: гастрит, гастроэнтерит, энтерит, n (%)	22 (55)	31 (77,5)	0,034
энтероколит, гастроэнтероколит, n (%)	18 (45)	9 (22,5)	0,034
в том числе гемоколит, n (%)	4 (10)	1 (2,5)	0,166
Высота лихорадки, °С (М, 95% ДИ)	38,9 (37,5–40,2)	38,3 (37,8–39)	0,395
Температура тела >39 °C, <i>n</i> (%)	21 (52,5)	7 (17,5)	0,001
Продолжительность лихорадки, дни (Ме [МКР])	3,5 [3; 4]	3 [2,5; 4]	0,317
Частота стула (Ме [МКР])	4 [3; 5]	8 [5; 10]	0,347
Продолжительность стула, дни (Ме [МКР])	3,5 [2; 5]	5 [4; 6,5]	0,587
Рвота, п (%)	13 (32,5)	32 (80)	<0,001
Частота рвоты (Ме [МКР])	2 [1; 3]	5 [3; 7]	0,015
Продолжительность рвоты, дни (Ме [МКР])	1 [1; 4]	2 [1; 3]	0,806
Синдром избыточного газообразования, $n\ (\%)$	24 (60)	27 (67,5)	0,485
Абдоминальный синдром, п (%)	18 (45)	24 (60)	0,179
Обезвоживание, n (%)	16 (40)	29 (72,5)	0,003
Кетоацидоз , <i>n</i> (%)	4 (10)	13 (32,5)	0,013

 Π римечание. ОКИ — острая кишечная инфекция; РВ/НВ — рота-/норовирус; БЭН — белково-энергетическая недостаточность; ЖКТ — желудочно-кишечный тракт.

ции, иммунохроматографического анализа, проводили бактериологическое исследование кала в целях выявления патогенной кишечной флоры (шигеллы, сальмонеллы, диареегенные эшерихии), детям до года — дополнительно условно-патогенной флоры. Для изучения патофизиологических механизмов диареи в кале определяли осмолярность (метод осмометрии), количество углеводов (метод Бенедикта), кальпротектин, рН. У детей с подтвержденным диагнозом COVID-19 определяли РНК вируса в кале.

Статистический анализ полученных данных проводили с использованием статистической программы Statistica 8 (США). Анализ соответствия вида распределения признака закону нормального распределения выполняли с помощью теста Шапиро—Уилка. Нулевую гипотезу отклоняли при пороговом уровне статистической значимости (р), равном 0,05. В случае невыполнения данного условия использовали непараметрические методы статистического анализа. При нор-

мальном распределении признака из мер центральной тенденции использовали среднюю (M), из мер рассеяния — 95% доверительный интервал (ДИ); при распределении признака, отличном от нормального, определяли медиану (Ме) и межквартильный размах (MKP, T.e. значения 25-го и 75-го процентилей) соответственно. Для определения достоверности различий между сравниваемыми группами, в зависимости от типа распределения признаков и количества наблюдений, использовали критерии Стьюдента, Манна-Уитни (для порядковых переменных) и критерий х-квадрат Пирсона (для номинальных данных), точный критерий Фишера.

Результаты

В группе детей с вирусными диареями диагностировали 3 (7,5%) случая норовирусной инфекции, остальные приходились на инфицирование ротавирусами. Данные по клиническим характеристикам групп представлены в табл. 1. Сравниваемые группы по основным характеристикам (пол, возраст, масса тела) не имели статистически значимых различий.

Эпиданамнез был положительным у 28 (70%) детей с COVID-19, причем на контакт с больным диареей указывали лишь 3 ребенка. В группе вирусных диарей контакт с больным отмечался достоверно реже — у 16 (40%) детей. Дети с проявлениями диареи

Таблица 2. Результаты стандартных лабораторных исследований пациентов с COVID-19 и рота/норовирусными инфекциями Table 2. Results of standard laboratory tests for patients with COVID-19 and rota/norovirus infections

Признак	Возбудитель ОКИ		
	SARS-CoV-2 $n=40$	PB/HB n=40 (37/3)	p
Общеклинический анализ крови			
лейкоцитоз, n (%)	11 (27,5)	6 (15)	0,171
лейкопения, n (%)	7 (17,5)	2 (5)	0,076
нейтрофиллез, n (%)	16 (40)	24 (60)	0,073
нейтропения, n (%)	3 (7,5)	1 (2,5)	0,304
лимфоцитоз, n (%)	3 (7,5)	-	
лимфопения, n (%)	14 (35)	25 (62,5)	0,013
тромбоциты, M (95% ДИ)	299 (245–351,5)	358,5 (266–466,5)	0,030
анемия (гемоглобин < 110 г/л), n (%)	8 (20)	11 (27,5)	0,430
Биохимический анализ крови, КОС, определении электр	олитов, п (%)		
гипергликемия (>6,1 ммоль/л)	14 (35)	1 (2,5)	<0,001
АлАТ >31ед/л	18 (45)	17 (42,5)	0,822
AcAT >31eд/л	33 (82,5)	37 (92,5)	0,177
СРБ >5 мг/л	18 (45)	20 (40)	0,655
лактат >2,2 ммоль/л	8 (20)	13 (32,5)	0,204
ацидоз (pH <7,35)	11 (27,5)	20 (50)	0,039
гипонатриемия (<135 ммоль/л)	21 (52,5)	12 (30)	0,041
гипокалиемия (<3,5 ммоль/л)	2 (5)	3 (7,5)	0,645
Исследование кала для определения механизма диареи, п	(%)		
повышение уровня осмолярности (норма <125)	21 (52,5)	28 (70)	0,109
наличие углеводов в кале	12 (30)	26 (65)	0,017
рН кала ≤5,5	-	3 (7,5)	
рН кала ≥8	1 (2,5)	-	
наличие кальпротектина	26 (37,5)	7 (17,5)	0,046
наличие лейкоцитов в кале ≥8	14 (35)	9 (22,5)	0,217
наличие эритроцитов в кале	2 (5)	3 (7,5)	0,644
стеаторея (нейтральный жир)	28 (70)	31 (77,5)	0,446
амилорея (крахмал)	16 (40)	20 (50)	0,369

 Π римечание. ОКИ — острая кишечная инфекция; РВ/НВ — рота/норовирус; КОС — кислотно-основное состояние; АлАТ — аланинаминотрансфераза; АсАТ — аспартатаминотрансфераза; СРБ — С-реактивный белок.

любой этиологии госпитализировались достаточно рано, в среднем на 2-й день от начала болезни. Различий по этому признаку мы также не выявили. Продолжительность пребывания пациентов в стационаре в сравниваемых группах также статистически значимо не различалась.

Практически все дети, вошедшие в исследование, переносили заболевание в среднетяжелой форме. Лишь у 3 пациентов из основной группы и у одного из контрольной болезнь протекала тяжело. Очевидно, это связано с особенностями выборки (наблюдение проводили за госпитализированными) и критериями включения (больных, нуждающихся в реанимационном пособии, из исследования исключали).

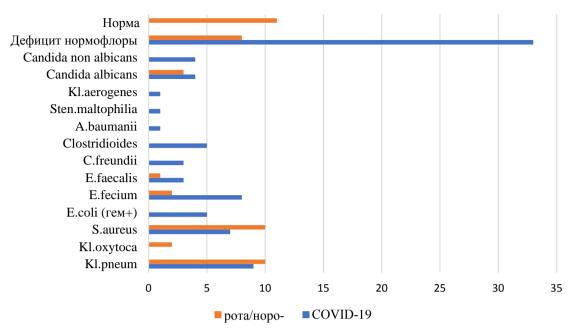
Катаральный и респираторный синдромы регистрировались в основной группе чаще, чем в контрольной. Признаки компенсированной дыхательной недостаточности с нормальным уровнем насыщения (сатурации — Sp) крови кислородом регистрировали у 2 пациентов основной группы. В этой же группе дыхательная недостаточность с Sp 96% наблюдалась у 4 и с Sp <92% — у 3 детей. У 4 детей, инфицированных SARS-CoV-2, имелась рентгенологически подтвержденная пневмония. В контрольной группе пациентов с дыхательной недостаточностью не было.

Лихорадка при вирусных инфекциях редко достигает пиретических значений, температуру тела более 39 °С некоторые эксперты рассматривают как «красный флаг» бактериальной природы диареи. В нашем исследовании у детей с острыми кишечными инфекциями рота/норовирусной этиологии пиретическую лихорадку регистрировали достоверно чаще в основной группе (см. табл. 1).

Продолжительность и частота эпизодов жидкого стула статистически значимо не различались у детей в сравниваемых группах. Рвоту, в том числе многократную, регистрировали чаще в группе с ротаи норовирусными диареями. Известно, что частота и продолжительность рвоты при кишечных инфекциях у детей коррелирует с выраженностью обезвоживания [8]. В нашем исследовании обезвоживание чаще регистрировали также в группе вирусных диарей. Причем если у детей с COVID-19 дегидратация была 1-й степени, то в контрольной группе обезвоживание было более выраженным: 19 пациентов имели 1-ю степень, 10 — 2-ю степень. Кетоацидоз чаще наблюдали в группе детей с рота/норовирусными диареями.

Поражение верхних отделов желудочно-кишечного тракта у представленных нами пациентов чаще было связано с энтеропатогенными вирусами, тогда как SARS-CoV-2 статистически значимо чаще вызывал клинические признаки дистального колита.

Данные лабораторных исследований представлены в табл. 2 и 3. У детей с COVID-19 статистически значимо чаще регистрировали повышение уровня глюкозы по сравнению с возрастной нор-


мой и гипонатриемию. Для них же были характерны высокие уровни тромбоцитов в крови. Однако нужно отметить, что случаев тромбоцитопении в нашем исследовании мы не зарегистрировали. Лимфопению в общем анализе крови, ацидоз в крови чаще наблюдали у пациентов с классическими вирусными кишечными инфекциями.

Результаты копроцитограммы у наших пациентов оказались, к сожалению, малоинформативными в части дифференциальной диагностики. Стеаторею и амилорею чаще наблюдали при инфицировании энтеропатогенными вирусами, а лейкоциты в кале — при COVID-19, но статистически значимых различий по этим показателям мы также не получили. Пациентов с повышенным уровнем углеводов в кале было больше в группе вирусных диарей, а кальпротектина — в группе вирусных диарей, а кальпротектина — в группе COVID-19. Нарушение кишечного биоценоза было характерно для пациентов, инфицированных SARS-CoV-2. В этой группе «нормобиоценоз» отсутствовал. В группе с рота/норовирусными диареями 11 пациентов не имели признаков нарушения кишечного состава микрофлоры (см. рисунок).

Обсуждение

Патогенез поражений желудочно-кишечного тракта при COVID-19 до сих пор находится на стадии обсуждения. Ряд экспертов указывают на способность SARS-CoV-2 непосредственно поражать энтероциты, т.е. на прямой вирусиндуцированный цитопатический эффект. Следствием этого может быть нарушение моторики, целостности кишечного барьера, водно-электролитного баланс и развитие диареи. В 2020 г. М. Lamers и соавт. [9] продемонстрировали способность SARS-CoV-2 поражать дифференцированные энтероциты на экспериментальной модели тонкой кишки человека, при этом с помощью конфокальной и электронной микроскопии внутриклеточно обнаруживали значительное число вирусных частиц. Кроме того, проведение секвенирования и гибридизации in situ биоптатов кишечника пациентов с COVID-19 позволило выявить вирус непосредственно в тканях толстой и терминального отдела подвздошной кишок [10]. С учетом этого полученные нами клинические данные по частоте поражения дистальных отделов желудочно-кишечного тракта вполне объяснимы.

Ангиотензинпревращающий фермент 2-го типа в кишечнике участвует в поддержании гомеостаза жидкости и электролитов, а также в регуляции транспорта и взаимодействия различных метаболитов (глюкозы и аминокислот) [11]. Наше исследование подтвердило развитие электролитных нарушений (гипонатриемию), склонность к гипергликемии у больных COVID-19. Следует отметить, что в группе «вирусных диарей» ацидоз регистрировали значительно чаще. Мы объясняем это большей частотой формирования обезвоживания за счет

Рисунок. Характеристика микробиоценоза кишечника у пациентов в зависимости от этиологии заболевания (в абсолютных значениях. Составлено автором).

Figer. Characteristics of the intestinal microbiocenosis in patients depending on the etiology of the disease (in absolute values).

частоты эпизодов рвоты, потерями на перспирацию за счет высокой лихорадки, преобладанием поражения тонкой кишки.

Считают, что взаимодействие SARS-CoV-2 с АПФ-2 в желудочно-кишечном тракте приводит к увеличению продукции провоспалительных цитокинов, повреждению барьерной функции за счет разрушения ряда специфических барьерных белков (окклюдина, клаудинов и пр.) [11]. Это, в свою очередь, может привести к развитию воспаления в кишечнике, в том числе в его дистальных отделах. Кроме того, некоторые исследователи предполагают, что одной из причин возникновения воспалительных реакций в различных отделах желудочнокишечного тракта может стать опосредованное SARS-CoV2 снижение количества АПФ-2 в клетках слизистой оболочки, что приводит к повышению уровня ангиотензина II (эффекторного пептида классического пути ренин-ангиотензиновой системы), снижению уровня ангиотензина-1-7 (эффекторный пептид альтернативного пути ренинангиотензиновой системы), активации фактора некроза опухоли альфа (TNFa) и дефициту триптофана [12]. Преобладание детей с высоким уровнем кальпротектина в группе пациентов с COVID-19 отчасти подтверждает эту гипотезу.

Дисрегуляция экспрессии АПФ-2 тесно связана с изменениями микробиоты кишечника. В исследованиях на моделях животных при «выключении» гена экспрессии АПФ-2 наблюдали значительное снижение уровня абсорбции триптофана [11, 12]. Подобные изменения приводили к снижению секреции антимикробных пептидов (дефензинов), что рас-

сматривали как наиболее вероятную причину развития кишечного дисбиоза. Наше исследование показало, что у больных, инфицированных SARS-CoV-2, нарушение кишечного микробиоценоза действительно развивается статистически значимо чаще, чем при «классических» вирусных острых кишечных инфекциях. Кроме того, дисбиотические сдвиги более выражены, спектр условно-патогенной флоры разнообразнее, а сниженный уровень нормальной микрофлоры регистрируется чаще. Формирование статистически значимых количественных и качественных расстройств состава кишечной микробиоты при COVID-19 также позволяет объяснить «заинтересованность» нижних отделов желудочнокишечного тракта при вирусной (SARS-CoV-2) диарее.

Заключение

Результаты исследования позволяют предполагать достаточно сложный генез поражения желудочно-кишечного тракта у детей с COVID-19. Диарея у таких пациентов ожидаемо связана с осмотическим механизмом, поскольку речь идет о вирусной инфекции и вовлечении зрелых эпителиоцитов тонкой кишки. В то же время у ряда пациентов мы наблюдали клиническую картину дистального колита, что вместе с высокой частотой регистрации в кале кальпротектина указывает на воспалительный (инвазивный) характер диареи. И, наконец, выраженные сдвиги в кишечном биоценозе также, по-видимому, играют роль в развитии диареи при COVID-19.

ЛИТЕРАТУРА (REFERENCES)

- Садретдинова Л.Д., Ганцева Х.Х., Вишняков Д.С., Голубятников В.Б., Калимуллина Д.Х., Павлов В.Н., Тюрин А.В. Поражение желудочно-кишечного тракта при COVID-19. Профилактическая медицина 2022; 25(7): 106-115. [Sadretdinova L.D., Gantseva Kh.Kh., Vishnyakov D.S., Golubyatnikov V.B., Kalimullina D.Kh., Pavlov V.N., Tyurin A.V. Gastrointestinal injury in COVID-19. Profilakticheskaya Meditsina 2022; 25(7): 106-115. (in Russ.)] DOI: 10.17116/profmed202225071106
- Wu X., Jing H., Wang C., Wang Y., Zuo N., Jiang T. et al. Intestinal Damage in COVID-19: SARS-CoV-2 Infection and Intestinal Thrombosis. Front Microbiol 2022; 13: 860931. DOI: 10.3389/fmicb.2022.860931
- Wang W., Xu Y., Gao R., Lu R., Han K., Wu G., Tan W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA 2020; 323(18): 1843–1844. DOI: 10.1001/jama.2020.3786
- Щикота А.М., Погонченкова И.В., Турова Е.А., Рассулова М.А., Филлипов М.С. Поражение желудочнокишечного тракта, печени и поджелудочной железы при COVID-19. Доказательная гастроэнтерология 2021; 10(1): 30-37. [Shchikota A.M., Pogonchenkova I.V., Turova E.A., Rassulova M.A., Filippov M.S. Gastrointestinal tract, liver, and pancreas affected by COVID-19. Dokazatel'naya gastroenterologiya 2021; 10(1): 30-37. (in Russ.)] DOI: 10.17116/dokgastro20211001130
- Masanam M.K., Cheney S.M., Sutton W., Keyloun J.W., Fitzgibbons S. COVID-19 infection and large intestinal perforation: A case series. Int J Surg Case Rep 2022; 98: 107538. DOI: 10.1016/j.ijscr.2022.107538
- 6. Халиуллина С.В. Анохин В.А., Поздняк В.А., Раимова Ю.А., Хаертынов Х.С., Закирова А.М., Мухамердиева З.Т. Диарейный синдром у детей в период пандемии коронавирусной инфекции. Практическая медицина 2022; 20(5): 48—55. [Khaliullina S.V., Anokhin V.A., Pozdnyak V.A., Raimova Yu.A., Khaertynov Kh.S., Zakirova A.M., Mukhamerdie-

Поступила: 27.07.23

Статья подготовлена по материалам исследований, выполненных в рамках гранта ФГБОУ ВО Казанского ГМУ Минздрава России № 2/22—1 от 1.08.2022 года «Клинико-лабораторные предикторы постковидных состояний в разных возрастных группах».

Проведение исследования одобрено локальным этическим комитетом $\Phi \Gamma FOY$ ВО Казанского ΓMY (протокол заседания N_{2} 3 от 21.03.2023).

Конфликт интересов:

Авторы данной статьи подтвердили отсутствие конфликта интересов, о которых необходимо сообщить.

- *va Z.T.* Diarrheal syndrome in children during the COVID-19 pandemic. Prakticheskaya meditsina 2022; 20(5): 48–55. (in Russ.)] DOI: 10.32000/2072–1757–2022–5–48–55
- Харитонова Л.А., Османов И.М., Плоскирева А.А., Солодовникова О.Н., Милова Ю.Е. Поражения органов пищеварения при COVID-19 у детей. Экспериментальная и клиническая гастроэнтерология 2021; 185(1): 53—66. [Kharitonova L.A., Osmanov I.M., Ploskireva A.A., Solodovnikova O.N., Milova Yu.E. Digestional diseases in COVID-19 in children. Eksperimental'naya i klinicheskaya gastroenterologiya 2021; 185(1): 53—66. (In Russ.)] DOI: 10.31146/1682—8658-ecg-185—1—53—66
- 8. Халиуллина С.В., Анохин В.А., Николаева И.В., Валиахметова Л.Х. Особенности острых кишечных инфекций, протекающих с синдромом обезвоживания. Практическая медицина 2013; 75(6): 133–139. [Khaliullina S.V., Anokhin V.A., Nikolaeva I.V., Valiakhmetova L.Kh. Features of acute intestinal infections occurring with dehydration syndrome. Prakticheskaya meditsina 2013; 75(6): 133–139. (in Russ.)]
- 9. Lamers M.M., Beumer J., van der Vaart J., Knoops K., Puschhof J., Breugem T.I. et al. SARS-CoV-2 productively infects human gut enterocytes. Science 2020; 369(6499): 50–54. DOI: 10.1126/science.abc1669
- Westerhoff M., Jones D., Hrycaj S.M., Chan M.P., Pantanowitz L., Tu H. et al. Gastrointestinal Pathology in Samples From Coronavirus Disease 2019 (COVID-19)-Positive Patients. Arch Pathol Lab Med 2021; 145(9): 1062–1068. DOI: 10.5858/arpa.2021–0137-SA
- 11. Pola A., Murthy K.S., Santhekadur P.K. COVID-19 and gastrointestinal system: A brief review. Biomed J 2021; 44(3): 245–251. DOI: 10.1016/j.bj.2021.01.001
- Garg M., Royce S.G., Lubel J.S. Letter: intestinal inflammation, COVID-19 and gastrointestinal ACE2-exploring RAS inhibitors. Aliment Pharmacol Ther 2020; 52(3): 569–570. DOI: 10.1111/apt.15814

Received on: 2023.07.27

The article was prepared based on the materials of studies carried out within the framework of the Grant of the Kazan State Medical University of the Ministry of Health of Russia No. 2/22–1 dated August 1, 2022 "Clinical and laboratory predictors of post-COVID conditions in different age groups".

The study was approved by the Local Ethics Committee of the Kazan State Medical University (Protocol №3, March 21, 2023).

Conflict of interest: The authors of this article confirmed the lack of conflict of interest, which should be reported.