Эпилептическая энцефалопатия, аутизм и когнитивный дефицит, обусловленные мутацией в гене SYNGAP1

P.Г. Гамирова 1 , К.Р. Забирова 1 , Е.А. Горобеи 1 , А.Р. Сафина 1 , Л.Р. Самойлова 1 , С.Я. Волгина 2

¹ФГАОУ ВО «Казанский (Приволжский) федеральный университет, Казань, Россия; ²ФГБОУ ВО «Казанский государственный медицинский университет», Казань, Россия

Epileptic encephalopathy, autism and cognitive deficit caused by the SYNGAP1 gene mutation

R.G. Gamirova¹, K.R. Zabirova¹, E.A. Gorobets¹, A.R. Safina¹, L.R. Samoilova, S.Ya. Volgina²

¹Kazan (Volga region) Federal University, Kazan, Russia;

В работе проанализированы данные научных публикаций и представлено описание клинического случая редкой генетической эпилептической энцефалопатии, вызванной мутацией гена SYNGAP1. При описании клинического случая (девочка 4 лет с подтвержденным диагнозом эпилептической энцефалопатии SYNGAP1) подробно проанализированы анамнез заболевания, генеалогический анамнез, данные неврологического, нейропсихологического и речевого статусов, результаты генетического, электроэнцефалографического и нейровизуализационного (магнитно-резонансная томография — МРТ) обследований. Результаты обзора показывают, что ведущими симптомами заболевания, как правило, служат эпилепсия, расстройства аутистического спектра, отсутствие фразовой речи и умственная отсталость. К наиболее часто встречающимся эпилептическим приступам относятся атипичные абсансы, миоклонические, атонические приступы, миоклония век с абсансами, на электроэнцефалограмме: замедление в затылочных областях, диффузные продолженные комплексы «пик-, полипик-медленная волна». Патогномоничные нейровизуализационные изменения головного мозга обычно отсутствуют. Наиболее эффективны в контроле эпилептических припадков вальпроевая кислота, леветирацетам, этосуксимид. Учитывая редкость синдрома, авторы представили детальное описание клинического случая из собственной практики.

Заключение. Эпилептическая энцефалопатия SYNGAP1 имеет особую клиническую картину, включающую специфические изменения на ЭЭГ и определенный набор эпилептических приступов. Диагностический алгоритм для детей с эпилептической энцефалопатией, аутизмом, задержкой психоречевого развития должен содержать видео-электроэнцефалографический мониторинг с включением сна, а также поиск редких генетических синдромов, при необходимости с помощью секвенирования нового поколения, что позволяет рано выявить заболевание и выстроить адекватный план терапии.

Ключевые слова: дети, эпилептическая энцефалопатия SYNGAP1, аутизм, умственная отсталость, генетическая эпилепсия, электроэнцефалография.

Для цитирования: Гамирова Р.Г., Забирова К.Р., Горобец Е.А., Сафина А.Р., Самойлова Л.Р., Волгина С.Я. Эпилептическая энцефалопатия, аутизм и когнитивный дефицит, обусловленные мутацией в гене SYNGAP1. Рос вестн перинатол и педиатр 2024; 69:(5): 109–114. DOI: 10.21508/1027–4065–2024–69–5–109–114

The paper analyzes data from scientific publications and presents a clinical case study of a rare genetic epileptic encephalopathy caused by a mutation in the SYNGAP1 gene. The case study focuses on a 4-year-old girl who has been diagnosed with epileptic encephalopathy due to the mutation. The paper describes the anamnesis of the child's illness, including family history, neurological, neuropsychological, and speech assessments, as well as the results of genetic testing, electroencephalography, and magnetic resonance imaging (MRI). The findings indicate that the main symptoms of the condition are typically epilepsy, autism spectrum disorder, difficulty with phrasal speech, and mental retardation. Common types of seizures include atypical absence seizures, myoclonic seizures, atonic seizures, and eyelid myoclonia with absences. On the electroencephalogram, there is a slowdown in occipital activity and diffuse, prolonged "peak-polypic-slow-wave" complexes. Pathognomonic neuroimaging changes in the brain are typically absent. Valproic acid, levetiracetam, and ethosuximide have been shown to be the most effective treatments for controlling epileptic seizures. Due to the rarity of this syndrome, the authors have provided a detailed clinical case report from their practice.

Conclusion. SYNGAP1-related epileptic encephalopathy has a specific clinical presentation, including characteristic EEG findings and a particular pattern of seizures. The diagnostic approach for children with this condition, autism spectrum disorder, and delayed language development should include video electroencephalography with sleep deprivation, as well as genetic testing if necessary, using next-generation sequencing, to ensure early detection and appropriate treatment planning.

Key words: children, SYNGAP1-related epileptic encephalopathy, autism, mental retardation, genetic epilepsy, electroencephalography.

For citation: Gamirova R.G., Zabirova K.R., Gorobets E.A., Safina A.R., Samoilova L.R. Volgina S.Ya. Epileptic encephalopathy, autism and cognitive deficits caused by the SYNGAP1 gene mutation. Ros Vestn Perinatol i Pediatr 2024; 69:(5): 109–114 (in Russ). DOI: 10.21508/1027-4065-2024-69-5-109-114

утации гена *SYNGAP1* впервые выявлены в 2009 г. у пациентов с расстройствами аутистического спектра и несиндромальными вариантами умственной отсталости, а в 2013 г. была доказана их роль в развитии эпилептических энцефалопатий [1]. Для всех людей, имеющих мутации в гене *SYNGAP1*, характерны задержка развития, когнитивные нарушения и эпилепсия. Пенетрантность заболевания

достигает 100%. Оно может передаваться по аутосомно-доминантному типу, однако чаще всего это мутации *de novo*. По современным оценкам, у 0,7-1% пациентов с умственной отсталостью обнаруживают мутации гена *SYNGAP1* [2].

Патогенез заболевания. Ген *SYNGAP1* расположен на хромосоме 6р21.3 и кодирует специфический для мозга белок SynGAP, активирующий гуанозин-

²Kazan State Medical University, Kazan, Russia

трифосфатазу. Белок SynGAP играет важную роль в обеспечении пластичности синапсов [3]. Мутация гена SYNGAP1 приводит к дисбалансу процессов возбуждения и торможения в центральной нервной системе, что обусловливает нарушение образования новых синапсов в процессе обучения [2]. Обнаружено, что в нейронах, не экспрессирующих SynGAP, ускорен рост дендритов, увеличено накопление постсинаптических трансмиттеров, повышена активность возбуждающих сигналов на уровне синапсов и наблюдается преждевременная активация нейронных сетей. Таким образом, исследователи пришли к выводу, что ген SYNGAP1 участвует в регулировании скорости развития и дифференцировки нейронов, а нарушение этого процесса негативно влияет на функцию зарождающихся нейронных сетей [4].

В модели на мышах с мутацией в SYNGAP1 обнаружено преждевременное развитие синапсов, образованных дендритными шипиками, в раннем постнатальном периоде. Индукция мутаций SYNGAP1 после окончания критических периодов развития оказывает минимальное влияние на функцию синапсов, в то же время восстановление этих патогенных мутаций во взрослом возрасте на животных моделях не улучшает поведенческие и когнитивные функции. Эти данные демонстрируют, что белок SynGAP действует как репрессор развития нейронной возбудимости, способствующий формированию и поддержанию когнитивных способностей на протяжении всей жизни, но особенно он важен в детском возрасте. Предполагается, что скорость созревания синапсов дендритных

© Коллектив авторов, 2024

Адрес для корреспонденции: Гамирова Римма Габдульбаровна — к.м.н., доц., зав. кафедрой неврологии с курсами психиатрии, клинической психологии и медицинской генетики, вед. науч. сотр. научно-исследовательской лаборатории «Нейрокогнитивные исследования», зав. отделением видео-ЭЭГ-мониторинга Научно-клинического центра прецизионной и регенеративной медицины Казанского (Приволжского) федерального университета, ORCID: 0000-0002-8582-592X

Забирова Карина Ришатовна — ординатор 1-го года кафедры неврологии с курсами психиатрии, клинической психологии и медицинской генетики Института фундаментальной медицины и биологии Казанского (Приволжского) федерального университета, ORCID: 0000—0002—4501—126X Горобец Елена Анатольевна — к.филол.н., доц., зав. кафедрой прикладной и экспериментальной лингвистики, рук. научно-исследовательской лаборатории «Нейрокогнитивные исследования», зав. Центром патологии речи Научно-клинического центра прецизионной и регенеративной медицины Казанского (Приволжского) федерального университета, ORCID: 0000—0002—3859—5543

Сафина Айсылу Радиковна — асс. кафедры неврологии с курсами психиатрии, клинической психологии и медицинской генетики Казанского (Приволжского) федерального университета, ORCID: 0000–0001–9986–3217 Самойлова Людмила Руслановна — преподаватель кафедры неврологии

Самойлова Людмила Руслановна — преподаватель кафедры неврологии с курсами психиатрии, клинической психологии и медицинской генетики Казанского (Приволжского) федерального университета,

ORCID: 0009-0006-5422-0908

420008 Казань, ул. Кремлевская, д. 18

Волгина Светлана Яковлевна — д.м.н., проф. кафедры госпитальной педиатрии Казанского государственного медицинского университета,

ORCID: 0000-0002-4147-2309

420012 Казань, ул. Бутлерова, д. 49

шипиков в раннем возрасте является критическим фактором, определяющим нормальное интеллектуальное развитие [5]. Мыши с полной делецией *SYNGAP1* умирают в течение недели, а для мышей с гетерозиготными вариантами в гене *SYNGAP1* характерны низкий порог для возникновения эпилептических приступов, нарушение процессов обучения и запоминания, поведенческие проблемы [1].

Расстройства аутистического спектра у детей с мутацией гена SYNGAP1 и проблемы поведения. Распространенность аутизма среди пациентов с мутациями в гене SYNGAP1 варьирует от 50 до 80% [2, 6, 7]. Для носителей мутаций гена SYNGAP1 характерны все основные проявления расстройств аутистического спектра, а именно нарушения в социальном взаимодействии, стереотипный и ограниченный набор действий и интересов; кроме того, наблюдаются дефицит внимания, импульсивность, агрессивное поведение, повышенный болевой порог, гиперакузия и нарушения сна [2]. Поведенческие проблемы (наиболее часто — агрессия) также были выделены как характерные для пациентов с мутациями гена SYNGAP1, при этом их распространенность варьирует от 60 до 73% в этой популяции, в то время как расстройства аутистического спектра зарегистрированы по крайней мере у 50% всех пациентов. Авторами исследования, наряду с наиболее частыми проявлениями, были выделены реже встречающиеся признаки, общие для пациентов с мутациями гена SYNGAP1, включающие высокий болевой порог, проблемы с питанием, гипотонию, проблемы со сном, атаксию [7]. Аналогичные результаты получены и D.R.M. Vlaskamp и соавт. [1]: проблемы в поведении, проявляющиеся агрессией и истерикой, наблюдались у 73% пациентов, имеющих патогенные варианты гена SYNGAP1; расстройства аутистического спектра были диагностированы у 53% из пациентов.

Было высказано предположение, что хотя мутации в гене *SYNGAP1* играют определенную роль в патогенезе расстройств аутистического спектра, тем не менее их наличия недостаточно для развития аутизма [6].

Эпилепсия, обусловленная мутациями в гене **SYNGAP1.** Распространенность эпилепсии среди пациентов с мутациями в гене SYNGAP1 высока. Согласно данным D.R.M. Vlaskamp и соавт. [1] у 56 из 57 пациентов средний возраст начала эпилепсии составил 2 года (от 4 месяцев и до 7 лет). В когорте этих исследователей, состоявшей из 57 пациентов с мутациями в гене SYNGAP1, эпилепсия была выявлена в 98% случаев, при этом в форме миоклоний век с абсансами — в 65% из них, миоклоний — в 34%, атипичных абсансов — в 20% и типичных абсансов в 18%, атонических приступов — в 14%. У 7% пациентов до появления эпилепсии отмечались фебрильные судороги. Генерализованная полипик-волновая активность была зарегистрирована у 75% пациентов;

фокальные или мультифокальные эпилептиформные разряды наблюдались в 54% случаев, часто в дополнение к генерализованной полипик-волновой активности; замедление основной активности наблюдалось у 50% пациентов [1]. Эпилепсия при энцефалопатии SYNGAP1 часто включает такие приступы, как миоклонии век с абсансами и миоклонико-атонические приступы [1]. В данном исследовании у большинства детей при регистрации электроэнцефалограммы обнаружены интериктальные эпилептиформные разряды, преимущественно в затылочных областях с нарастанием индекса во время сна. Наряду с этим, в фоновой записи регистрировались ритмическая дельта-активность и медленный задний основной ритм. Только у 3 из 15 человек альфа-ритм к моменту исследования достиг частоты возрастной нормы [6]. Известно, что расстройства аутистического спектра, сопровождаемые патологической эпилептиформной активностью на электроэнцефалограмме, даже в отсутствие эпилептических припадков связаны с худшими прогнозами. A. Jimenez-Gomez и соавт. [6] предполагают, что это может быть применимо и к пациентам с мутациями гена SYNGAP1. Наиболее частыми из описанных в исследовании Н. Zhang и соавт. [8] приступов были миоклонии. Патогномоничными изменениями на электроэнцефалограмме были генерализованные разряды из пиков, полипиков и медленных волн, иногда с преобладанием в затылочной области. Инфантильными спазмами в раннем возрасте страдали 42,8% пациентов [8]. Схожие данные получены C. von Stülpnagel и соавт. [9] при исследовании рефлекторных приступов у лиц с мутациями в гене SYNGAP1. Миоклонии век, вызванные приемом пищи, встречались чаще остальных. Кроме того, приступы провоцировались орофациальными триггерами в виде прикосновений к лицу или ко рту. С. Mignot и соавт. [10] обнаружили примерно у 84% пациентов с мутациями в гене SYNGAP1 и умственной отсталостью генерализованную эпилепсию; у некоторых из них была диагностирована миоклонически-астатическая эпилепсия (синдром Дузе) или миоклония век с абсансами. Варианты приступов включали типичные или атипичные абсансы, миоклонии с падениями или без них, миоклонии век, тонико-клонические приступы и атонические приступы. На электроэнцефалограмме выявлялась генерализованная эпилептическая активность, часто с преобладанием в затылочных областях [10].

Наиболее эффективным противоэпилептическим препаратом для этих пациентов по данным многих авторов оказалась вальпроевая кислота. Однако также используются леветирацетам и этосуксимид. В настоящее время в литературе отсутствует информация об эффективности кетогенной диеты у детей с мутацией в *SYNGAP1* [8].

Задержка когнитивного развития и умственная отсталость. Энцефалопатия, вызванная мутациями гена *SYNGAP1*, характеризуется умственной отстало-

стью 5-го типа (mental retardation type 5 — MRD5) [8]. Распространенные фенотипы в MRD5 включают когнитивные и сенсорные дисфункции, нарушения экспрессивной и импрессивной речи, поведенческие проблемы и эпилепсию. У пациентов с MRD5 часто диагностируются расстройства аутистического спектра и синдром дефицита внимания и гиперактивности. Мутации по типу утраты функции в гене SYNGAP1 достаточно распространены, что делает мутации в этом гене одними из наиболее распространенных причин умственной отсталости с эпилепсией. У пациентов с тяжелыми вариантами гена SYNGAP1 отсутствует речь, очень низкий IQ (<50) и, как правило, имеются коморбидные расстройства, чаще — поведенческие проблемы [11].

Задержка развития служит первым проявлением заболевания у пациентов с мутациями гена SYNGAP1. Н. Zhang и соавт. [8] отмечают, что когнитивные нарушения появляются в течение первого года жизни и прогрессируют с возрастом; задержка речи более выражена, чем двигательные нарушения. У отдельных детей речь не начинает развиваться, у некоторых развитие речи варьирует от использования отдельных слов до предложений из 4—5 слов. В когорте D.R.M. Vlaskamp и соавт. [1] речь была нарушена у всех исследуемых, при этом у 25% пациентов она отсутствовала полностью. Умственная отсталость выявлена у 55 из 57 пациентов, при этом от умеренной до тяжелой — у 50 лиц, легкая — у остальных 5.

Особенности неврологического статуса и опорнодвигательного аппарата. По данным литературы, неврологический осмотр пациентов обычно выявляет мышечную гипотонию, атаксию, тремор, страбизм и микроцефалию. Атаксия или измененная походка наблюдались у 7 из 10 пациентов, о которых сообщили М.J. Parker и соавт. [12], при этом подчеркивалось, что особенности строения мозжечка являются ключевой частью фенотипа при патогенной мутации в гене SYNGAP1. Ортопедические аномалии включают сколиоз, плоскостопие, пронацию стопы, полую стопу, врожденную дисплазию тазобедренного сустава. Гистологическое исследование мозга пациента с атаксией обнаружило почти полное отсутствие клеток Пуркинье в мозжечке и астроцитоз [1]. У пациентов с мутациями гена SYNGAP1 обычно нарушена мелкая и общая моторика. Ограничения мелкой моторики проявляются в виде трудности захвата предметов пальцами или кистью, характерные нарушения общей моторики — наличие атаксии и диспраксии [7].

Черепно-лицевые особенности. Хотя некоторые авторы выделяют своеобразный внешний вид лица (миндалевидный разрез глаз, слегка приоткрытый рот, вытянутый нос, широкие уши, широко посаженные глаза и разной степени птоз), неясно, достаточно ли уникальны эти признаки, чтобы позволить врачу

подозревать данное заболевание исходя из имеющихся данных [12].

Нейровизуализация. Магнитно-резонансная томография головного мозга, как правило, не выявляет изменений. D.R.M. Vlaskamp и соавт. [1] отмечают, что по данным магнитно-резонансной томографии патологические изменения отсутствует у 70% пациентов. У 1 пациента была выявлена левая лобная подкорковая узловая гетеротопия. У остальных пациентов были неспецифические изменения, такие как гипогенезия мозолистого тела, увеличение желудочков или субарахноидальных пространств, киста шишковидной железы [1].

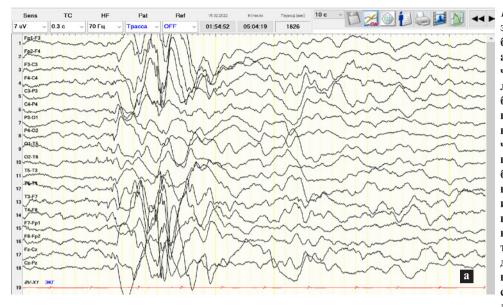
Приводим описание клинического случая, иллюстрирующего фенотип пациента с мутацией в гене SYNGAP1.

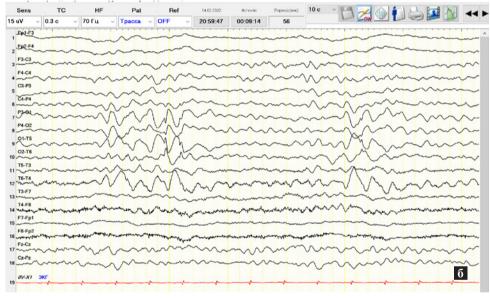
Клинический случай. Пациентка Д., 4 года. В возрасте 2 лет родители ребенка обратились с жалобами на отставание в психомоторном и речевом развитии в Научно-клинический Центр прецизионной и регенеративной медицины Казанского федерального университета. Их беспокоили общая моторная неловкость ребенка, неустойчивость при ходьбе, время от времени девочка «ходила на цыпочках»; стереотипные движения, частые моргания; отсутствие собственной речи и избирательное понимание обращенной речи; отсутствие глазного контакта, указательного жеста, реакции на детей и взрослых; задержка в формировании навыков опрятности и самообслуживания; наличие периодов агрессии и аутоагресии; нарушения сна; избирательность в еде.

В ходе комплексного обследования при проведении видео- электроэнцефалографического мониторинга с включением сна во время записи зафиксированы пароксизмы замираний — атипичные абсансы, а в фоновой электроэнцефалограмме — генерализованная эпилептиформная активность. При более внимательном наблюдении за ребенком родители заметили наличие многократных в течение дня пароксизмов замираний: в течение нескольких секунд девочка не реагировала ни на какие раздражители и прекращала двигательную активность.

Наследственный анамнез: у дяди по линии матери неустановленное психическое заболевание, у дальних родственников имеется эпилепсия и по линии матери, и по линии отца. Черепно-мозговые травмы родители отрицают.

Перинатальный анамнез: девочка от естественной второй беременности в 39 лет (первая беременность — роды, ребенок здоров), протекавшей на фоне головных болей, токсикоза, артериальной гипотонии. Роды самостоятельные на сроке 41 нед, масса тела при рождении 3850 г, оценка по шкале Апгар 7/8 баллов. Мама отмечает, что девочка при рождении не закричала, практически не кричала и не плакала в неонатальный период, была очень сла-


бой и все время спала. Голову девочка начала держать в 2 мес, сидеть в 8 мес, ходить в 13 мес, новые двигательные навыки появлялись на фоне терапии. Ходила девочка изначально неустойчиво, перестала падать при ходьбе только после 2 лет.


В неврологическом статусе: черепные нервы без асимметрии. Мышечный тонус диффузно снижен. Сухожильные рефлексы оживлены с рук и ног, равные. Сила по мышечным группам соответствует возрасту. Дискоординация. Тремор головы и пальцев рук, в руках минимален в покое, усиливается при достижении цели. Походка атактическая. Не умеет прыгать.

По данным нейропсихологического обследования и исследования речевого статуса в динамике (2,5 года; 3 года 2 мес; 4,5 года) выявлена выраженная задержка психоречевого развития с аутоподобным поведением, системное недоразвитие речи (1-й уровень речевого развития), дефицит развития мелкой и крупной моторики. Динамика развития высших психических функций слабоположительная, медленная, динамика в речевом развитии за 2 года не зафиксирована, невзирая на то, что девочка с 2 лет регулярно получает помощь в реабилитационных центрах, где занимается с логопедами, дефектологами и нейропсихологами. Работоспособность девочки возрасту не соответствует, фиксируется выраженный регуляторный дефицит (с трудом усваивает исполнение простых программ, практически не поддерживает их самостоятельно). Исследование функций приема, хранения и переработки информации выявляет грубый дефицит слухоречевого гнозиса, выраженный дефицит зрительно-пространственного и кожно-кинестетического гнозиса. Мотив экспертизы не сформирован. Учебное поведение не сформировано. Поведение полевое. Понимание обращенной речи избирательное на бытовом уровне, собственная речь представлена крайне редкими вокализациями. Характерны проблемы с жеванием со слабой положительной динамикой.

Навыки самообслуживания не сформированы, родители даже отмечают отрицательную динамику в приобретении навыков (девочку с трудом удается одевать, она сопротивляется гигиеническим процедурам).

При проведении магнитно-резонансной томографии головного мозга в 2,5 года патологии не выявлены. Консультирована сурдологом: без патологии. По данным видео- электроэнцефалографического мониторинга, проведенного в возрасте 2 года 7 мес, основная активность замедлена относительно возрастной нормы, периодически в затылочных областях регистрируется достаточно регулярное дельта-замедление; при бодрствовании и во сне зарегистрирована эпилептиформная активность высокого индекса в виде коротких и продолженных диффузных бисинхронных разрядов из комплексов пик-, полипик-медленная волна

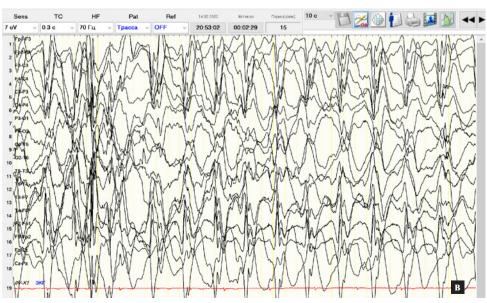


Рисунок. Фрагменты электроэнцефалограммы в периоде бодрствования (а, в) и сна (б). а — основной ритм незначительно замедлен, в затылочно-височных областях бисинхронно регистрируются высокоамплитудные медленные волны лельта-лиапазона частотой 2.5-3 Гп с включением спайкового компонента; б — регистрируются лиффузные бисинхронные разряды из комплексов пик-, полипикволна с преобладанием в лобно-центральных областях альтернирующей латерализации длительностью до 1-1,5 с; в - при бодрствовании регистрировались бисинхронные диффузные разряды из комплексов пик-, полипик-волна с частотой 2-2,5 Гц с преобладанием в лобно-центральных областях альтернирующей латерализации длительностью до 9 с, что клинически сопровождалось прекращением двигательной активности, амимией, приоткрыванием рта, медленным морганием (паттерн атипичного абсанса).

Figure. Fragments of an electroencephalogram during the waking period (a, B) and during sleep (6).

a — the main rhythm is slightly slowed down. High-amplitude slow waves of the delta range with a frequency of 2.5-3 Hz in the occipital-temporal regions are recorded bisynchronously with the inclusion of a spike; б — diffuse bisynchronous discharges spike-, polyspike-wave complexes are recorded with a predominance of alternating lateralization in the fronto-central areas with a duration of up to 1-1.5 seconds; B -the bisynchronous diffuse discharges spike-, polyspike-wave complexes with a frequency of 2-2.5 Hz were recorded during wakeness with a predominance of alternating lateralization in the fronto-central regions lasting up to 9 seconds, which was clinically accompanied by a cessation of motor activity, amimia, opening of the mouth, slow blinking (pattern of atypical absence).

высокой амплитуды с преобладанием то в лобных, то в затылочных областях альтернирующей латерализации длительностью до 3-9-11 с частотой 1,5-2,5 Гц (см. рисунок, а, б). При бодрствовании зафиксированы пароксизмальные события длительностью до 5-11 с, которые, с учетом клиникоэлектроэнцефалографических коррелятов, расценены как атипичные абсансы (см. рисунок, в).

С подозрением на синдромальное генетическое заболевание ребенок был направлен на молекулярногенетический анализ «Клиническое секвенирование экзома», по результатам которого обнаружена описанная ранее гетерозиготная мутация в гене *SYNGAP1* chr6:33440767G>A ENST00000646630 c.1715G>A p.Trp572*, приводящая к терминации синтеза белка. С помощью анализа по Сэнгеру подтверждена мутация de novo.

На фоне приема ребенком вальпроевой кислоты в дозе 27 мг/кг и этосуксимида 20 мг/кг/сут приступы купировались. Лечение переносит хорошо.

Заключение

При сочетании клинической картины эпилептической энцефалопатии, проявляющейся в раннем возрасте атипичными абсансами, миоклониями, специфическими изменениями на электроэнцефалограмме, расстройствами аутистического спектра, задержкой речевого развития и интеллектуальным дефицитом, в комплексный диагностический алгоритм необходимо включать поиск редких синдромальных генетических синдромов с помощью проведения секвенирования нового поколения, и в том числе исключать мутации в гене SYNGAP1, что позволяет рано диагностировать заболевание и выстроить адекватный план терапии.

ЛИТЕРАТУРА (REFERENCES)

- Vlaskamp D.R.M., Shaw B.J., Burgess R., Mei D., Montomoli M., Xie H. et al. SYNGAP1 encephalopathy: A distinctive generalized developmental and epileptic encephalopathy [published correction appears in Neurology. 2019; 93(20): 908]. Neurology 2019; 92(2): 96–107. DOI: 10.1212/ WNL.000000000000006729
- 2. *Nakajima R., Takao K., Hattori S., Shoji H., Komiyama N.H., Grant S.G.N.* Comprehensive behavioral analysis of heterozygous Syngap1 knockout mice. Neuropsychopharmacol Rep 2019; 39(3): 223–237. DOI: 10.1002/npr2.12073
- Gamache T.R., Araki Y., Huganir R.L. Twenty Years of Syn-GAP Research: From Synapses to Cognition. J Neurosci 2020; 40(8): 1596–1605. DOI: 10.1523/JNEUROSCI.0420–19.2020
- Llamosas N., Arora V., Vij R., Kilinc M., Bijoch L., Rojas C. et al. SYNGAP1 Controls the Maturation of Dendrites, Synaptic Function, and Network Activity in Developing Human Neurons. J Neurosci 2020; 40(41): 7980–7994. DOI:10.1523/ JNEUROSCI.1367–20.2020
- Clement J.P., Aceti M., Creson T.K., Ozkan E.D., Shi Y., Reish N.J. et al. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell 2012; 151(4): 709–723. DOI: 10.1016/j.cell.2012.08.045
- Jimenez-Gomez A., Niu S., Andujar-Perez F., McQuade E.A., Balasa A., Huss D. et al. Phenotypic characterization of individuals with SYNGAP1 pathogenic variants reveals a potential correlation between posterior dominant rhythm and developmental progression. J Neurodev Disord 2019; 11(1): 18. DOI: 10.1186/s11689-019-9276-y

Поступила: 05.07.24

Работа выполнена за счет средств Программы стратегического академического лидерства Казанского (Приволжского) федерального университета» («Приоритет-2030»).

Конфликт интересов:

Авторы данной статьи подтвердили отсутствие конфликта интересов и финансовой поддержки, о которых необходимо сообщить.

- Wright D., Kenny A., Eley S., McKechanie A.G., Stanfield A.C. Clinical and behavioural features of SYNGAP1-related intellectual disability: a parent and caregiver description. J Neurodev Disord 2022; 14(1): 34. DOI: 10.1186/s11689-022-09437-x
- Zhang H., Yang L., Duan J., Zeng Q., Chen L., Fang Y. et al. Phenotypes in Children With SYNGAP1 Encephalopathy in China. Front Neurosci 2021; 15: 761473. DOI:10.3389/ fnins.2021.761473
- 9. von Stülpnagel C., Hartlieb T., Borggräfe I., Coppola A., Gennaro E., Eschermann K. et al. Chewing induced reflex seizures («eating epilepsy») and eye closure sensitivity as a common feature in pediatric patients with SYNGAP1 mutations: Review of literature and report of 8 cases. Seizure 2019; 65: 131–137. DOI: 10.1016/j.seizure.2018.12.020
- Mignot C., von Stülpnagel C., Nava C., Ville D., Sanlaville D., Lesca G. et al. Genetic and neurodevelopmental spectrum of SYNGAP1-associated intellectual disability and epilepsy [published correction appears in J Med Genet. 2016; 53(10): 720]. J Med Genet 2016; 53(8): 511–522. DOI: 10.1136/ jmedgenet-2015–103451corr1
- 11. Weldon M., Kilinc M., Lloyd Holder J. Jr, Rumbaugh G. The first international conference on SYNGAP1-related brain disorders: a stakeholder meeting of families, researchers, clinicians, and regulators. J Neurodev Disord 2018; 10(1): 6. DOI: 10.1186/s11689-018-9225-1
- 12. Parker M.J., Fryer A.E., Shears D.J., Lachlan K.L., McKee S.A., Magee A.C. et al. De novo, heterozygous, loss-of-function mutations in SYNGAP1 cause a syndromic form of intellectual disability. Am J Med Genet A 2015; 167A(10): 2231–2237. DOI: 10.1002/ajmg.a.37189

Received on: 2024.07.05

The work was carried out using funds from the Strategic Academic Leadership Program of Kazan (Volga Region) Federal University (Priority-2030).

Conflict of interest:

The authors of this article confirmed the lack of conflict of interest and financial support, which should be reported.