Дифференцированный подход к лечению аритмогенных жизнеугрожающих состояний у больных X-сцепленной формой миопатии Эмери—Дрейфуса

О.С. Грознова, Г.Е. Руденская, Т.А. Адян, Д.А. Харламов

ОСП «Научно-исследовательский клинический институт педиатрии» ГБОУ ВПО РНИМУ им. Н.И. Пирогова, Москва; ФГБУ «Медико-генетический научный центр» РАМН, Москва

Differential approach to treating life-threatening arrhythmogenic conditions in patients with X-linked Emery—Dreifuss myopathy

O.S. Groznova, G.E. Rudenskaya, T.A. Adyan, D.A. Kharlamov

Research Clinical Institute of Pediatrics, N.I. Pirogov Russian National Research Medical University, Moscow; Research Center for Medical Genetics, Russian Academy of Medical Sciences, Moscow

Приведены два клинических примера больных с одинаковым диагнозом X-сцепленной формы прогрессирующей мышечной дистрофии Эмери—Дрейфуса и различным течением нарушений ритма и проводимости сердца, что определило различные подходы к тактике ведения. Обоснован дифференцированный подход к имплантации электрокардиостимулятора с подтверждением правильности тактики ведения в длительном катамнезе. У первого больного в 27 лет отсутствуют показания для имплантации электрокардиостимулятора. У второго больного в возрасте 13 лет выявлены показания и проведена имплантация, однако наблюдалось образование тромбов на электродах и в последующем потребовалось отключение предсердного электрода.

Ключевые слова: дети, прогрессирующая мышечная дистрофия, миопатия Эмери—Дрейфуса, X-сцепленная форма, сердечнососудистые нарушения, кардиомиопатия, нарушения ритма сердца, электрокардиостимулятор.

The paper gives 2 clinical examples of patients with the same diagnosis of progressive X-linked Emery-Dreifuss muscular dystrophy and the different course of rhythm and conduction disorders, which have determined various approaches to management tactics. There is evidence for a differential approach to pacemaker implantation, by confirming the correctness of management tactics in a long-term follow-up. A 27-year-old patient had no indications for pacemaker implantation. The other patient aged 13 years was found to have indications and underwent implantation; however, thrombi formed on the electrodes and the atrial electrode needed to be further disconnected.

Key words: children, progressive muscular dystrophy, Emery—Dreifuss myopathy, X-linked form, cardiovascular disorders, cardiomyopathy, arrhythmias, pacemaker.

Прогрессирующая мышечная дистрофия Эмери—Дрейфуса — редкое гетерогенное генетически детерминированное заболевание, характеризующееся ранним развитием контрактур суставов (локтевых, голеностопных и пр.), медленно прогрессирующей миопатией лопаточно-плечевой и тазово-перонеальной локализации и широким спектром нарушений ритма и проводимости сердца на фоне формирования специфической кардиомиопатии [1]. В настоящее время известно 7 генетических форм заболевания: X-сцепленные связаны с мутациями генов *EMD* (эмерин) и *FHL1*; аутосомно-доминантные — с генами *LMNA* (ламин), *SYNE1*, *SYNE2* и *TMEM43*; аутосомно-рецессивная — возможно, с геном *LMNA* [2]. Наиболее распространены формы, связанные с мутацией

гена эмерина и ламина, остальные встречаются гораздо реже [3].

Клинические проявления миопатии Эмери-Дрейфуса характеризуются медленно прогрессирующей мышечной слабостью с дебютом в первой-второй декаде жизни; преимущественным поражением трехглавой и двуглавой мышц плеча, мышц тазового пояса, бедер и перонеальной группы; контрактурами локтевых, голеностопных суставов; синдромом «ригидной спины»; сердечно-сосудистыми нарушениями; отсутствием умственной отсталости и выраженных псевдогипертрофий мышц [4]. Дифференциальный диагноз проводится с заболеваниями, проявляющимися сочетанием миопатического синдрома с нарушением ритма и проводимости сердца. В дифференциально-диагностический ряд следует включать аритмогенную дисплазию правого желудочка, миопатию Беккера, миотоническую миопатию, конечностно-поясные миопатии, синдром Элерса-Данло, атаксию Фридрейха и пр.

Миопатия Эмери—Дрейфуса относится к тем заболеваниям, которые ярко демонстрируют необходимость содружественного наблюдения больного неврологом и кардиологом, поскольку практически все больные имеют сердечно-сосудистые нарушения, высока частота развития сердечной недостаточности и внезапной сердечной смерти, сердечные

© Коллектив авторов, 2015

Ros Vestn Perinatol Pediat 2015; 4:63-68

Адрес для корреспонденции: Грознова Ольга Сергеевна — д.м.н., в.н.с. отделения детской кардиологии и аритмологии Научно-исследовательского клинического института педиатрии

Харламов Дмитрий Алексеевич — к.м.н., в.н.с. отделения детской неврологии и эпилептологии того же учреждения

125412 Москва, ул. Талдомская, д. 2

Руденская Галина Евгеньевна — д.м.н., в.н.с. научно-консультативного отдела Медико-генетического научного центра РАМН

Адян Тагуи Аветиковна — н.с. лаборатории ДНК-диагностики того же учреждения

115478 Москва, ул. Москворечье, д. 1

аномалии являются основной причиной летального исхода, а превентивное лечение сердечно-сосудистых нарушений увеличивает продолжительность жизни больных [5]. Однако существуют проблемы диагностики поражения сердца при X-сцепленной форме миопатии Эмери—Дрейфуса: у большинства больных отсутствует асимптоматика со стороны сердечнососудистой системы — длительное время они могут не предъявлять неврологических жалоб и диагноз миопатии впервые нередко подозревает кардиолог [6]. Без имплантации электрокардиостимулятора 95% больных умирают в возрасте до 40 лет, однако данное оперативное лечение не полностью решает проблему внезапной сердечной смерти.

При Х-сцепленной форме выявляется широкий спектр сердечно-сосудистых нарушений: экстрасистолия, неустойчивая суправентрикулярная тахикардия, пароксизмальная тахикардия, трепетание предсердий, атриовентрикулярная блокада, синдром слабости синусового узла, кардиомиопатия (поражение предсердий и желудочков) и др. [7, 8]. Прогноз для жизни у пациентов неблагоприятный. Лимитирующим фактором являются прежде всего жизнеугрожающие нарушения ритма и проводимости сердца. В то время как миопатические проявления могут быть нерезко выраженными, больные нередко до пятого десятилетия могут сохранять способность к самостоятельной ходьбе и самообслуживанию.

Рекомендации по тактике ведения больных прогрессирующей мышечной дистрофией Эмери-Дрейфуса таковы: всем пациентам, имеющим характерную клиническую картину сочетания миопатического синдрома с нарушением ритма и проводимости сердца, необходимо генетическое верифицирование диагноза. В 1995 г. больным с любой формой миопатии Эмери— Дрейфуса на момент подтверждения диагноза рекомендовалась имплантация электрокардиостимулятора. Такая тактика ведения не была особенно успешной: в 1995-2005 гг. 46% пациентов умерли от внезапной сердечной смерти на фоне имплантированного кардиостимулятора [9]. С 2005 г. рекомендуется имплантация кардиовертеродефибириллятора [10]. Однако в 2005–2012 гг. в литературе было представлено много сообщений о внезапной сердечной смерти больных миопатией Эмери-Дрейфуса с имплантированным кардиовертеродефибириллятором [11, 12].

Причины неуспешности вышеперечисленной тактики ведения больных с X-сцепленной формой заболевания связаны с недостаточностью сроков наблюдения (генетическая диагностика стала общедоступной менее 20 лет назад), низкой распространенностью болезни, недостаточно исследованной фенотипической изменчивостью. Все эти факторы говорят о необходимости оптимизировать стандарты веления больных.

Цель настоящей статьи: представить клинические наблюдения больных с одинаковым (генетически

подтвержденным) диагнозом X-сцепленной формы прогрессирующей мышечной дистрофии Эмери—Дрейфуса и различным течением нарушений ритма и проводимости сердца, что предопределило различные подходы к ведению пациентов. Обосновывается дифференцированный подход к имплантации электрокардиостимулятора с подтверждением правильности тактики ведения в длительном катамнезе.

Клинический пример 1.

Больной Д. (1986 г. рождения). Жалобы на ограничение разгибания локтевых суставов.

Семейный анамнез отягощен: у матери выявлена кардиомиопатия, брадикардия и атриовентрикулярная блокада I степени. Кроме того, в родословной отмечены глаукома, ишемическая болезнь сердца, инсульты, холецистит, онкологические заболевания, гипертоническая болезнь. У брата матери имеются особенности походки (вперевалку) и контрактуры голеностопных суставов.

Из анамнеза жизни известно, что ребенок от второй беременности (первая — девочка, здорова), протекавшей с токсикозом І триместра, вторых родов в срок. Роды в срок, физиологические, масса тела при рождении 3850 г, длина тела 51 см. Закричал сразу, перинатальный анамнез не отягощен. Раннее развитие — по возрасту. Физическое развитие среднее, гармоничное.

Анамнез заболевания: до 9 лет рос и развивался без особенностей. Занимался в спортивной секции. В 9 лет тренер по баскетболу впервые обратил внимание на сгибательные контрактуры локтевых суставов (максимальное разгибание 150°). Консультирован ортопедом. Поставлен диагноз: травматические контрактуры локтевых суставов. В 10 лет впервые сделана ЭКГ, на которой выявлена атриовентрикулярная блокада 1-й степени. Наблюдался кардиологом, лечения не получал. К 11 годам отмечено прогрессирование контрактур локтевых суставов до 120°. Стало неудобно завязывать шнурки. Обратились к ортопеду повторно. Было рекомендовано оперативное лечение контрактур.

При обследовании перед операцией консультирован неврологом, который констатировал наличие контрактур локтевых (сгибательных) и голеностопных суставов (ограничение тыльного сгибания, невозможность опуститься на пятку), а также ригидность спины. Заподозрена миопатия. Проведено биохимическое исследование крови: активность креатинфосфокиназы (КФК) повышена до 950 МЕ/мл (норма до 190 МЕ/мл), аспартатаминотрансферазы (АСТ) — до 46 МЕ/мл (норма до 40 МЕ/мл), аланинаминотрансферазы (АЛТ) — до 50 МЕ/мл (норма до 45 МЕ мл). Диагноз: миопатия неуточненная.

Также в этом возрасте впервые появились приступы учащенного до 180 в минуту сердцебиения с внезапным началом и окончанием, которые возникали

примерно 1 раз в месяц, длились до 30 мин, самостоятельно купировались. Мальчик внимания на них не обращал, беспокойства они ему не доставляли, родителям и врачам не жаловался.

В 12 лет на ЭКГ выявлена атриовентрикулярная блокада 1—3-й степени (?), триплет с широким *QRS*-комплексом (?). Направлен в районную больницу, в которую обратился в возрасте 13 лет. На ЭКГ — стойкое трепетание предсердий, желудочковая экстрасистолия. Госпитализирован. Попытки медикаментозного восстановления ритма сердца — прием дигоксина, изоптина, верапамила, кордарона, аллапенина, анаприлина эффекта не дали. Проведена попытка кардиоверсии — ритм не восстановлен.

Впервые госпитализирован в отделение патологии сердечно-сосудистой системы института в 14 лет. Масса 65 кг, рост 168 см. В объективном статусе отмечены следующие изменения: псевдогипертрофия икроножных мышц, диффузное снижение тонуса мышц, слабость мышц лица, гипотрофия мышц плеча. Сухожильные рефлексы с рук не вызываются, с ног – ослаблены; ограничено сгибание головы, ригидность спины, крыловидные лопатки, сгибательные контрактуры локтевых суставов (разгибание до 125°), ретракция ахилловых сухожилий. Встает с пола без помощи рук, может прыгать, поднимается по лестнице без помощи перил. Наличие мышечной слабости отрицает. В легких везикулярное дыхание, хрипов нет. Тоны сердца звучные, выслушивается брадиаритмия 67 в минуту. Других изменений нет. Предварительный диагноз – трепетание предсердий; прогрессирующая мышечная дистрофия Эмери-Дрейфуса.

При обследовании: ЭКГ — трепетание предсердий с частотой сокращения 256 в минуту, частота сокращения желудочков 56—60 в минуту (рис. 1). Эхокардиограмма — симметричная необструктивная гипертрофия миокарда (толщина межжелудочковой перегородки 12 мм, задней стенки левого желудочка 11,3 мм). Размеры желудочков не увеличены. Сократимость миокарда удовлетворительная. Дилатация правого предсердия до 59 мм в диаметре.

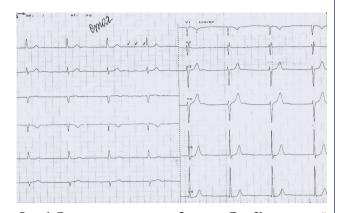


Рис. 1. Электрокардиограмма больного Д. с Х-сцепленной формой миопатии Эмери—Дрейфуса. Низкоамплитудное трепетание предсердий (стрелками отмечены едва заметные *P*-зубцы).

Трикуспидальная регургитация 1-1,5(+). Выраженная неоднородность эхогенности миокарда межжелудочковой перегородки с участками повышенной эхоплотности.

Холтеровское мониторирование: брадикардия в течение суток, средняя частота сердечных сокращений днем 64 в минуту, ночью — 49 в минуту. В дневное и ночное время отмечается постоянная форма трепетания предсердий. Паузы ритма до 1,980 мс (норма). Электромиография выявила первично-мышечный характер поражения.

Лабораторные данные: ACT - 43,5 ME/мл (норма до 40 ME/мл); AЛT - 49,1 ME/мл (норма до 45 E/мл); $ЛД\Gamma - 615 \text{ ME/мл}$ (норма до 450 ME/мл); $K\Phi K - 849 \text{ ME/мл}$ (норма до 190 ME/мл); калий -3,4 ммоль/л (норма -3,5-5,5 ME/мл). В остальном - без особенностей. Проведено молекулярно-генетическое исследование: наиболее часто встречающиеся мутации гена эмерина и гена ламина не выявлены.

В связи с предполагаемым диагнозом, неэффективностью ранее предпринятых попыток назначения антиаритмических препаратов, а также выявленной гипокалиемией назначен панангин в дозе 8 таблеток в день под контролем уровня электролитов крови.

Таблица. Динамика показателей холтеровского мониторирования и эхокардиографии

	* * * * * * * * * * * * * * * * * * *							
Возраст, годы	Показатель							
	14	15	16	17	18	22	25	28
Среднедневная ЧСС	60	63	59	54	52	51	55	50
Паузы ритма, мс	3664	2478	1833	2190	1850	2726	1831	1755
Трепетание предсердий	_	_	+/-	+	+	+	+	+
Правое предсердие, мм	60	62	65	69	72	78	83	90
Правый желудочек, мм	17	20	21	22	23	25	27	28
Левый желудочек, размер, фракция выброса	Норма							
АВ-блокада 1-3-й степени	+	+	_	_				_
Желудочковые экстрасистолы, шт	2	3	2	4	8	5	7	9

Примечание. ЧСС – частота сердечных сокращений; АВ – атриовентрикулярная.

Через 3 дня отмечено восстановление синусового ритма без атриовентрикулярной блокады с частотой 73—82 в минуту. Концентрация калия в крови достигла 4,9 ммоль/л.

Диагноз: кардиомиопатия (симметричная необструктивная гипертрофия миокарда; атриомегалия); трепетание предсердий (лекарственная ремиссия); атриовентрикулярная блокада 1—2-й степени. Прогрессирующая мышечная дистрофия Эмери—Дрейфуса.

Рекомендовано: постепенное снижение дозы панангина до 3 таблеток в день; прием препарата в этой дозе в течение месяца; L-карнитин 600 мг в сутки длительными курсами по 3—4 мес в сочетании с коэнзимом Q_{10} 90 мг в сутки.

За время наблюдения абсолютных показаний к имплантации электрокардиостимулятора выявлено не было (см. таблицу). Отмечались рецидивы трепетания предсердий, которые больной купировал приемом панангина, а после 18 лет самостоятельно решил отказаться от лечения.

В 19 лет проведено секвенирование гена эмерина и выявлена мутация с.187+1G>A в гемизиготном состоянии, таким образом, диагноз X-сцепленной формы миопатии Эмери—Дрейфуса генетически подтвержден. Другие члены семьи не обследованы.

Прогрессирование мышечной слабости было медленным до возраста 18 лет. В дальнейшем, со слов больного, прогрессирования не отмечено. Прогрессирование контрактур наблюдалось до 19 лет. Максимальный угол разгибания локтя 110°. Оперативное лечение контрактур не проводилось. В лабораторных показателях значимой динамики не отмечалось. Пациент закончил школу и колледж. Работает грузчиком на автоматическом погрузчике. Женат, имеет дочь.

Клинический пример 2.

Больной А. (1996 г.рождения), предъявляет жалобы на повышенную утомляемость.

Семейный анамнез отягощен по онкологическим заболеваниям, инсультам, гипертонической болезни.

Анамнез жизни. Ребенок от второй беременности (первая беременность у матери закончилась рождением здоровой девочки), протекавшей с токсикозом в І триместре. Роды вторые, в срок, физиологические, масса тела при рождении 3280 г, длина 50 см. Закричал сразу, перинатальный анамнез не отягощен. Раннее развитие — по возрасту; физическое развитие среднее, гармоничное.

Анамнез заболевания. Впервые нарушение ритма сердца (экстрасистолия, брадикардия) выявлено по данным ЭКГ при плановом профилактическом осмотре в школе в октябре 2007 г. в возрасте 11 лет.

Ребенок обследован в возрасте 12 лет: эхокардиография — умеренное увеличение правого и левого желудочков без нарушения сократительной способности миокарда; холтеровское мониторирование — основной ритм предсердный с частотой 43—79 в минуту, синоатриальная блокада 2-й степени, эпизоды резко выраженной брадикардии до 43—58 в минуту, предсердная экстрасистолия всего 3356 за сутки. Поставлен диагноз: синдром слабости синусового узла 2-й вариант. В комплексе лечения рекомендованы милдронат, кудесан, элькар, беллатаминал, фенибут.

В 13 лет проведена магнитно-резонансная томография сердца: выявлено асимметричное увеличение объема правого предсердия; в проекции переднего и латерального сегментов входного тракта и латерального сегмента основания правого желудочка отмечена фиброадипозная перестройка стенки с ее истончением и выбуханием контура стенки желудочка кнаружи, степень истончения — от 1 до 1,4 мм.

В возрасте 14 лет при проведении холтеровского мониторирования зарегистрирована брадикардия в среднем за сутки 48 в минуту, 498 суправентрикулярных и 2668 желудочковых экстрасистол за сутки, эпизоды ритма из атриовентрикулярного соединения, суправентрикулярного ускоренного ритма, в ночное время – 29 эпизодов асистолии от 3 до 7,2 с. Рекомендована имплантация электрокардиостимулятора. Произведена имплантация двухкамерного электрокардиостимулятора жим DDDR). При выписке рекомендован прием соталекса 80 мг в сутки, тромбоасса 50 мг в сутки. Через 4 мес аритмологом по месту жительства соталекс заменен (в связи с сохранением трепетания предсердий) на кордарон 600 мг/сут с переходом на поддерживающую дозу 200 мг/сут.

В возрасте 15 лет находился на лечении в нашем отделении. Масса 62 кг, рост 166 см. В объективном статусе: легкие псевдогипертрофия икроножных мышц и мышц предплечья, тонус мышц диффузно снижен, отмечается слабость мышц лица, гипотрофия мышц плеча; сухожильные рефлексы с рук не вызываются, с ног — резко ослаблены; ограничено сгибание головы, ригидность спины, крыловидные лопатки, сгибательные контрактуры локтевых суставов 140°, ретракция ахилловых сухожилий. Встает с пола без помощи рук, может прыгать, поднимается по лестнице без помощи перил. В легких везикулярное дыхание, хрипов нет. Перкуторно границы сердца не расширены. Тоны сердца звучные, выслушивается брадиаритмия до 67 в минуту. Других изменений нет.

На ЭКГ: трепетание предсердий с нормальной частотой сокращения желудочков. На эхокардиограмме: увеличение правого предсердия и желудочка, фиброз миокарда правого желудочка, трикуспидальная регургитация 1—2-й степени. На предсердном и желудочковом электродах визуализируются образования, расцененные как тромбы. Холтеровское мониторирование: на фоне приема кордарона регистрировалась нормосистолическая форма фибрилляции предсердий, небольшой процент навязанных комплексов днем, в ночное время навязанный ритм электрокардиостимулятора.

При перепрограммировании зарегистрированы эпизоды трепетания предсердий, сверхчастой стимуляцией трепетание предсердий купировано.

Лабораторно-инструментальные показатели: активность КФК - 1127 МЕ/мл (норма до 190 МЕ/мл), ЛДГ - 652 МЕ/мл (норма до 450 МЕ/мл), АСТ - 44 МЕ/мл (норма до 40 МЕ/мл), АЛТ - 42 МЕ/мл (норма до 45 МЕ/мл); калий 4,2 ммоль/л (норма 3,5- 5,5 ммоль/л). При электромиографии выявлен первично-мышечный характер поражения.

Диагноз: кардиомиопатия у больного прогрессирующей мышечной дистрофией Эмери—Дрейфуса (Х-сцепленная форма): атриомегалия, дилатация полости правого желудочка, фиброадипозная перестройка миокарда правого желудочка. Синдром слабости синусового узла (брадикардия, асистолия до 7,2 в анамнезе, периоды узлового ритма, периоды транзиторного ускоренного предсердного ритма с блокадой проведения, трепетание предсердий). Состояние после имплантации двухкамерного электрокардиостимулятора.

В связи с неэффективностью кордарона назначен аллапенин 50 мг/сут. С кардиопротективной целью назначен престариум, а также варфарин. Консультирован неврологом — впервые поставлен диагноз миопатии Эмери-Дрейфуса. Рекомендована плановая повторная госпитализация через 6 мес. Через неделю после выписки на ЭКГ вновь зарегистрирована постоянная форма трепетания предсердий на фоне работы электрокардиостимулятора с навязанным ритмом 45—95 в минуту.

В 15 лет проведено молекулярно-генетическое исследование гена эмерина, обнаружена мутация с.266-1_272delgGCTACAA в гемизиготном состоянии. Носительство заболевания выявлено у матери, тети и двух двоюродных сестер пробанда.

Через год после имплантации электрокардиостимулятора по данным эхокардиографии тромбы на электродах уменьшились и фиброзировались. Во время госпитализации в возрасте 16 лет, учитывая отсутствие сцепки предсердно-желудочкового проведения, электрокардиостимулятор переведен из режима двухкамерной стимуляции (DD) в режим однокамерной стимуляции (VVI). Предсердный электрод отключен (рис. 2). С 15 лет не получает антиаритмической терапии. Продолжается прием варфарина и престариума.

ЛИТЕРАТУРА

- 1. Finsterer J., Stöllberger C. Primary myopathies and the heart. Scand Cardiovasc J 2008; 42; 1: 9–24.
- Raffaele di Barletta M., Ricci E., Galluzzi G. et al. Different mutations in the LMNA gene cause autosomal dominant and autosomal recessive Emery—Dreifuss muscular dystrophy. Am J Hum Genet 2000; 66: 1407–1412.
- Manilal S., Recan D., Sewry C.A. et al. Mutations in Emery-Dreifuss muscular dystrophy and their effectes on emerin protein expression. Hum Mol Genet 1998; 7: 855–864.
- 4. Puckelwartz M., McNally E.M. Emery-Dreifuss muscular

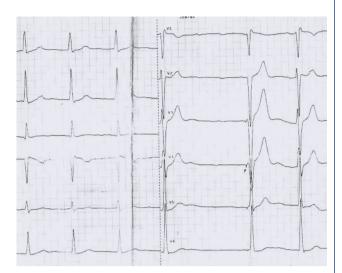


Рис. 2. Электрокардиограмма больного А. с Х-сцепленной формой миопатии Эмери—Дрейфуса. На фоне собственного ритма регистрируются единичные сокращения, навязанные электрокардиостимутятором. Низкоамплитудное трепетание предсердий можно визуализировать в правых грудных отведениях.

В 17 лет (возраст последней госпитализации) состояние оставалось стабильным. Мальчик закончил школу, учится в колледже на дневном обучении.

Заключение

Приведенные клинические примеры демонстрируют, что больной прогрессирующей мышечной дистрофией Эмери—Дрейфуса может длительное время не нуждаться в имплантации электрокардиостимулятора. Больные с одинаковым диагнозом, имея сходные клинические проявления поражения скелетно-мышечной системы, могут демонстрировать разные по тяжести сердечно-сосудистые нарушения, что определяет различную тактику ведения.

Вследствие скрытого (клинически непроявляющегося) протекания жизнеугрожающих нарушений ритма больным миопатией Эмери—Дрейфуса показано обязательное кардиологическое обследование с момента постановки диагноза [13]. Необходим дифференцированный подход к имплантации электрокардиостимулятора, в связи с возможностью интраоперационных и послеоперационных осложнений (провокации аритмий, инфекционного эндокардита, тромбоэмболии и т.п.).

- dystrophy. Handb Clin Neurol 2011; 101: 155-166.
- Hermans M.C., Pinto Y.M., Merkies I.S. et al. Hereditary muscular dystrophies and the heart. Neuromuscul Disord 2010; 20: 8: 479–492.
- Parmar M.S., Parmar K.S. Emery—Dreifuss humeroperoneal muscular dystrophy: cardiac manifestations. Can J Cardiol 2012; 28: 4: 516.
- Wessely R., Seidl S., Schomig A. Cardiac involvement in Emery—Dreifuss muscular dystrophy. Clin Genet 2005; 67: 220–223.

НАСЛЕДСТВЕННЫЕ БОЛЕЗНИ

- 8. *Ishikawa K., Mimuro M., Tanaka T.* Ventricular arrhythmia in X-linked Emery-Dreifuss muscular dystrophy: a lesson from an autopsy case. Intern Med 2011; 50: 5: 459–462.
- 9. Van Berlo J.H., De Voogt W.G., Van der Kooi A.J. et al. Metaanalysis of clinical characteristics of 299 carriers of LMNA gene mutations: do lamin A/C mutations portend a high risk of sudden death? J Mol Med (Berl) 2005; 83: 1: 79–83.
- Nigro G., Russo V., Ventriglia V.M. et al. Early onset of cardiomyopathy and primary prevention of sudden death in X-linked Emery—Dreifuss muscular dystrophy. Neuromuscul Disord 2010; 20: 3: 174–177.
- 11. Zaim S., Bach J., Michaels J. Sudden death in an Emery-

- Dreifuss muscular dystrophy patient with an implantable defibrillator. Am J Phys Med Rehabil 2008; 87: 4: 325–329.
- 12. *Golzio P.G.*, *Chiribiri A.*, *Gaita F.* 'Unexpected' sudden death avoided by implantable cardioverter defibrillator in Emery Dreifuss patient. Europace 2007; 9: 12: 1158–1160.
- 13. *Грознова О.С., Новиков П.В.* Ранняя диагностика поражения сердца при X-сцепленной форме мышечной дистрофии Эмери-Дрейфуса у детей. Рос вестн перинатол и педиат 2011; 1; 27–32. (Groznova O.S., Novikov P.V. Early diagnosis of cardiac lesion in X-linked Emery-Dreifus muscular dystrophy in children. Ros vestn perinatol i pediat 2011; 1; 27–32.)

Поступила 12.05.15