Preview

Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics)

Advanced search

Molecular stress and chronic metabolic disorders

https://doi.org/10.21508/1027-4065-2020-65-5-12-22

Abstract

Stress is the response of the organism to various external and internal events. All response reactions change from metabolic processes to metabolic stresses in minutes or even seconds. The scientists most often discuss oxidative, nitrosative and carbonyl stresses which are characterized by the accumulation of free radicals and other reactive oxygen species, as well as active carbonyl compounds, in the cells and extracellular fluid. These active (signal) molecules are powerful nonspecific modifiers of the structure and function of proteins, lipids, carbohydrates, and they interfere with bioenergetics. Small doses of active signal molecules are necessary for adaptive reactions of the body, they inhibit metabolic disorders, especially protein disorders, but their excessive accumulation causes pathological processes with pronounced modification of proteins and cardiovascular, neurodegenerative, autoimmune, connective tissue diseases and cancer. The authors discuss possible protection and prevention measures of metabolic stress.

About the Authors

E. A. Yurieva
Veltischev Research and Clinical Institute for Pediatrics, Pirogov Russian National Research Medical University
Russian Federation

Moscow



N. N. Novikova
Kurchatov Institute
Russian Federation

Moscow



V. V. Dlin
Veltischev Research and Clinical Institute for Pediatrics, Pirogov Russian National Research Medical University
Russian Federation

Moscow



E. S. Vozdvizhenskaya
Veltischev Research and Clinical Institute for Pediatrics, Pirogov Russian National Research Medical University
Russian Federation

Moscow



References

1. Kosmachevskaya O.V., Shu-maev K.B., Topunov A.F. Carbonyl stress: from bacteria to humans. Petrozavodsk: IP N.A. Markov, 2018; 225. (in Russ.)

2. Vladimirov Yu.A. Violation of the barrier properties of the inner and outer membranes of mitochondria, necrosis and apoptosis. Bio-logicheskie membrany 2002; 19 (5): 356—377. (in Russ.)

3. Cellier G. How to become a scientist. M.N. Kondrashova, I.S. Khorola (eds). Moscow: Progress, 1987; 368. (in Russ.)

4. Kalinchenko S.Yu., VorslovL.O., Tyuzikov I.A., Tishova Yu.A. Oxidative stress as a cause of systemic aging. The role of al-pha-lipoic acid (ESPA-LIPON) drugs in the treatment and prevention of age-related diseases. Farmateka 2014; 6: 45—56. (in Russ.)

5. Rahal A., Kumar A., Singh V., Yadav B., Tiwari R., Chakraborty S. Oxidative stress. Prooxidants, and antioxidants. Interplay Biomed Res 2014; 7: 612—664. Doi: 10.1155/2014/761264

6. Gralas-Delamarche A., Debre F., Vinsent S., Cillard J. Physical inactivity, insulin resistance, and the oxidative-inflammation loop. Free Radic Res 2014; 48(1): 93—108. Doi: 10.3109/10715762.2013.847528

7. Kim Y.W., Bysova T.V. Oxidative stress in angiogenesis and vascular disease. Blood 2014;123(5): 62—81. Doi: 10.1182/blood-2013-09-512749

8. Robert A.M., Robert L. Xantin-oxidoreductase, free radicals and cardiovascular disease. Pathol Oncol Res 2014; 20(1): 1-10. DOI: 10.1007/s12253-013-9698-x

9. Inoue M., Sato E.F., Nishikawa M., Park A.M., Kira Y., Ima-da I., Utsumi K. Mitochondrial generation of reactive oxygen species and its role in aerobic life. Current Med Chem 2003; 10(23): 2495-2505. DOI: 10.2174/0929867033456477

10. Marnette L.J. Oxiradicals and DNA damage. Carcinogenesis 2000; 21(3): 361-370.

11. Shames D.S., Minna J.D., Gazdar A.F. DNA methylation in health, disease and cancer. Current Mol Med 2007; 7(1): 85-102. DOI: 10.2174/156652407779940413

12. Halliwell B. Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch Biochem Biophys 2008; 476(2):107-112. DOI: 10.1016/j.abb.2008.01.028

13. Durackova Z.Some current insights into oxidative stress. Physiol Res 2010; 59(4): 459-469.

14. Zhang F.-F., Zhang Y.-F., Zhu H.-J. Effects of kaempherol quercetin on cytochrome 450 activities in primarily cultured and hepatocytes. Zhejiang Da Xue Xue Baj Yi Xue Ban 2006; 35(1): 18-22.

15. Snedecoк S.J. Sudharshan L., Cappeleri J.C., Sadosky A.B., Mehta S., Botteman M.F. Sistematic review and meta-analysis of pharmacological therapies for painful diabetic peripheral neuropathy. Pain Pract 2014; 14(2): 167-184. DOI: 10.1111/papr.12054

16. Garkavi L.Kh. Activation therapy. Antistress activation and training reactions and their use for healing, prevention and treatment. Taganrog: 2005; 88. (in Russ).] www.rak.by.https://www.skif.biz/files/454c39.pdf.

17. Kuznetsova V.L., Solovyova A.G. Nitric oxide, biological role, mechanisms of action. Sovremennye problemy nauki I obrazovaniya (Modern problems of science and education) 2015; 4: 1-9. (in Russ.)]

18. Pacher P., Beckman J.S., Liaudet L. Nitric oxid and perox-initrite in health and disease. Physiol Res 2007; 87: 315-424. DOI: 10.1152/physrev.00029.2006

19. Tomomi G., Masataka M. Nitric oxidt and endoplasmic reticulum stress. Arteriosclerosis, Trombos Vasc Biol 2006; 26: 1439-1445. DOI: 10.1161/01.ATV.0000223900.67024.15

20. Knott A.B., Bossy-Wetzel E. Nitric oxide in health and disease of the nervous system. Antioxidant Redox Signaling 2009;11(3): 541-553. DOI: 10.1089/ARS.2008.2234

21. Vanin A.F. Nitric oxide in biomedical research. festnik Rossiskoi AMN 2000; 4: 3-5. (in Russ.)

22. Сосунов А.А. Оксид азота как межклеточный посредник. Соровский образовательный журнал 2000; 6: 27-34. [Sosunov A.A. Nitric oxide as an intercellular mediator. Sor-ovskyi оbrazovatelnyi zhurnal 2000; 6: 27-34. (in Russ.)]

23. Turk Z. Glycotoxines, carbonyl stress and relevance to diabetes and its complications. Physiol Res 2010; 49:147-156.

24. Fiori F., Lombardi A., Miele C., Giudicelli J., Beguinot f., Van Obberghen E. Methylglyoxal impairs insulin signaling and insulin action on glucose-induced insulin. Diabetologia 2011; 54: 2941-2952. DOI: 10.1007/s00125-011-2280-8

25. Dhar A., Dhar I., Jiang B., Desai K.M., Wu I. Chronic meth-ylglioxalic infusion by minipump causes pancreatic beta-cell dysfunction and induces type 2 diabetes in Sprague-Dawley rats. Diabetes 2011; 60: 899-908. DOI: 10.2337/db10-0627

26. Uribari J., Cai W., Peppa M., Goodman S., Ferrucci L., Striker G., Vlassara H. Circulating glycotoxins and dietary advanced glycation end products: two links to inflammatory response, oxidative stress and aging. J Gerontol A Biol Sci Med Sci 2007; 62: 427-433. DOI: 10.4236/ojps.2012.22003

27. Oguri M., Nakajima T., Yamamoto Y., Takano N., Tanaka T. et al. Effects methylglyoxal on human cardiac fibroblast: role of transient receptor potential ankyrin 1 (TRPA) channels. Am J Physiol Heart Circ Physiol 2014; 307: 1339-1352. DOI: 0.1152/ajpheart.01021.2013

28. Chan W.H., Wu Y.J. Methylglyoxal and high glucose co-treatment induses apoptosis or necrosis in human vein endothelial cells. J Clin Biochem 2008; 103: 1144-1157. DOI: 10.1002/jcb.21489

29. Radu B.M., Dumitrescu S.H.E., Mustaciosu C.C., Radu M. Dual effect of methylglyoxal on the intracellular Ca2+ signaling and neurite outgrowth in mouse sensory neurons. Cel MolNeurobiol 2012; 32: 1043-1057. DOI: 10.1007/s10571-012-9823-5

30. Ichihashi M., Yagy M., Monoto K., Yonet A. Glycation stress and photo-aging in skin. Anti -Agig Med 2011; 8: 23-29. DOI: 10.3793/jaam.8.23

31. Piedrafita G., Keller M.A., Ralser M. The impact of non-enzymatic reactions and enzyme promiscuity on cellular metabolism during (oxidative) stress conditions. Biomolecules 2015; 5: 2101- 2122. DOI: 10.3390/biom5032101

32. Lankin V.Z., Konovalova G.G., Tikhaze A.K., Shumaev K.V., Kumskova E.M., Vigimaa M. The initiation of the free radical peroxidation of low-density lipoproteins by glucose and its metabolite methylglyoxal: a common molecular mechanism of vascular wall injure in atherosclerosis and diabetes. Mol Cell Biochem 2014; 395: 241-252. DOI: 10.1007/s11010-014-2131-2

33. Kosmachevskaya O.V., Shumaev K.V., Nasybullina E.I., Gubkina S.A., Topunov A.F.Interaction of S-nitrosoglu-tatione with methemoglobin under conditions of modeling carbonyl stress. Hemoglobin 2013; 37: 205-218. DOI: 10.3109/03630269.2013.773911

34. Stefanovic A., Jeremic K., Kadija S, Mitrovic M., Fili-monovic D. et al. Uterine tumor resembling ovarian sex cord tumor. Case report and review of literature. Eur J Gynecol Oncol 2013; 34: 275-277.

35. Gromova N.V., Martynova M.I., Prosnyakova K.V., Revin V.V., Revina E.S., Seikina A.I., Stolbova T.A. The effect of hypoxia on the conformation and redistribution of hemoglobin in human red blood cells. Ogarev-Online 2016; 24(89): 7. (in Russ.)

36. Bouillon V.V., Khnychenko L.K., Sapronov N.A., Kovalenko A.L., Alekseeva L.E., Romantsov M.G. Evaluation of metabolic changes in hypoxia at the molecular-cellular level and the possibility of their medical correction. Uspekhi sovremen-nogo estestvoznaniya 2006; 12: 29-32 (in Russ.)

37. Dutra F.F., Bozza M.T. Heme innate immunity and inflammation. Front Pharmacol 2014; 5: 115. DOI: 10.3389/fphar.2014.00115

38. Schaer D.J., Buchler P.W., Alayash A.I., Belcher J.D., Vercel-lotti G.M. Hemolysis and free hemoglobin resisted: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood 2013; 121: 1276-1284. DOI: 10.1182/blood-2012-11-451229

39. Buchner P.W., Agnillo F.D. Toxicological consequences extracellular hemoglobin: biochemical and physiological perspectives. Antioxid Redox Signal 2010; 12: 275-291. DOI: 101089/ars.2009.2799

40. Severin F.F., Fenyuk B.F., Skulachev V.N.The possible role of protein glycation in the “device of a large biological clock”. Biokhimiya (Biochemistry) 2013; 78(9): 1331-1336. (in Russ.)

41. Yuryeva E.A., Sukhorukov V.S., Tsarego-rodtsev A.D., Vozdvizhenskaya E.S., Kharabadze M.N., Novikova N.N., Kovalchuk M.V. Modification of protein molecules under endogenous intoxication as a risk factor of chronic metabolic diseases. Molekulyarnaya Meditsina 2013; 3: 45-52. (in Russ.)

42. Serum albumin in clinical medicine. Yu.A. Gryzunov, G.E. Dobretsov (eds). Moscow: GEOTAR, 1998; 440. (in Russ.)

43. Titov V.N. Albumin, saturated fatty acid transport, and metabolic stress syndrome (literature review). Klinicheskaya laboratornaya diagnostika 1999; 4: 3-11. (in Russ.)

44. Komarova M.N., Gryzunov Yu.A. The structure of the albumin molecule and its binding centers. In: Serum albumin in clinical medicine. Yu.A. Gryzunov, G.E. Dobretsov (eds). Moscow: GEOTAR, 1998; 28-51. (in Russ.)

45. Levit D.G., Levit M.D. Human serum albumin homeostasis: new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum аlbumin measurements. Int J Gen Med 2016; 15(9): 229255. DOI: 10.2147/IJGM.S102819

46. Dobretsov G.E. The binding parameters of the probe L-35 with serum albumin. In: Serum albumin in clinical medicine. Yu.A. Gryzunov, G.E. Dobretsov (eds). Moscow: GEOTAR, 1998; 170-178. (in Russ.)

47. Komarova M.N. Microalbuminuria and human diseases. In: Serum albumin in clinical medicine. Yu.A. Gryzunov, G.E. Dobretsov (eds). Moscow.: GEOTAR, 1998; 84-94. (in Russ.)

48. Titov V.N. Change in the binding properties of albumin in the dynamics of myocardial infarction: albumin and transport of fatty acids. Kardiologiya 2001; 10: 19-23. (in Russ.)

49. Titov V.N. Phylogenetic theory of general pathology. The pathogenesis of diseases of civilization. Atherosclerosis. Moscow: INFRA-M, 2015; 237. (in Russ.)

50. Yang J., Carroll K.S., Liebler D.C. The expanding landscape of the thiol redox proteome. Mol Cell Proteomics 2016; 15(1): 1-11. DOI: 10.1074/mcp.O115.056051

51. Klomsiri C., Karpus P.A., Poole L.B. Cysteine-based redox switches in enzymes. Antioxid Redox Sygnal 2011; 14: 10651077. DOI: 10.1089/ars.2010.3376

52. Alexandrov V.Ja. Reactivity of cells and proteins. L.: Nauka, 1985; 378. (in Russ.)

53. Bychkova V.E., Basova L.B., Balobanov V.A. How the membrane surface affects the structure of proteins. Uspekhi biologicheskoi khimii 2014; 54: 133-202. (in Russ.)

54. Novikova N., Kovalchuk M., Stepina N., Gyautdinov R., Chukhrai E., Yurieva E. Distinct effect of xenobiotics on the metal-binding properties of protein molecules. J Synchrotrons Rad 2015; 22: 1001-1007. DOI: 10.1107/S1600577515005627

55. Novikova N.N., Kovalchuk M.N., Yurieva E.A., Konovalov O.V., Rogachev A.V., Stepina N.D. The possibility of X-ray fluorescence measurement in term of air defence for the study of molecular mechanisms of disorders of microelement balance in body. Kristallografiya 2012; 57(5): 727-734. (in Russ.)

56. Novikova N.N., Kovalchuk M.N., Yurieva E.A., Konovalov O.V., Stepina N.D., Rogachev A.V. The enhancement of metal-binding properties in hemoglobin: the role of mild damaging factors. J Physical Chem 2019;123: 8370- 8377. DOI: 10.1021/acs.jpcb.9b06571

57. Yurieva E.A., Sukhorukov V.S., Vozdvizhenskaya E.S., Novikova N.N.Atherosclerosis: hypotheses and theories. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics) 2014; 59 (3): 6-17. (in Russ.)

58. Gajda M., Banas K, Banas A., Jawien J., Mateuszuk L., Chlopicki S. Distribution of selected elements in atherosclerotic plaques of apoE/ LDLR-double Knockot mics assessed by synchrotron radiation-induced micro-XRF. X-ray Spec-trom 2006; 37: 495-502. DOI: 10.1002/[rs.1075

59. Gajda M., Kowalska J., Banas A., Banas K., Kwiatek W.M., Kostogrys R.B. Distribution of selected elements in atherosclerotic plaques of apoE/ LDLR-double knockout mice subjected to dietary and pharmacological treatments. Synchrotron Rad Nat Sci 2010; 9(1): 114-115. DOI: 10.1016/j.radphyschem.2011.02.021

60. Watt F., Rajendran R., Ren M.Q., Tan B.K.N., Halliwel B. A nuclear microscopy study of trace elements Ca, Fe, Zn, and Cu in atherosclerosis. Nucl Instr And Meth In Phis Res 2006; 249: 646-652. DOI: 10.1016/jnimb.2006.03.073

61. Lee S.-J., Koh J.-Y. Roles of Zn and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes. Molecular Brain 2010; 3: 30. DOI: 10.1186/1756-6606-3-30

62. Yurieva E.A., Dlin V.V., Vozdvizhenskaya E.S., Sukhorukov V.S., Semyachkina А.N., Kharabadze M.N. Dysmetabolic nephropathy In children with hereditary connective tissue dysplasia. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics) 2020; 65(1): 71–76. (in Russ.)] DOI: 10.21508/1027-4065-2020-65-1-71-76

63. Shumaev K.V., Kosmachevskaya O.V., Nasybullina E.I., Grjvjv S.V., Novikov A.A., Topunov A.F. New dinitrosyl iron complexes bound with physiologically active dipeptide car-nosine. J Biol Inorg Chem 2017; 22: 153-160. DOI: 10.1007/s00775-016-1418-z.

64. Skulachev V.P., Sku-lachevM.V., FenyukB.A. Life without old age. Moscow: Eks-mo, 2014; 256. (in Russ.)

65. Yurieva E.A., Novikova N.N., Sukhorukov V.S., Kushnare-va M.V., Vozdvizhenskaya E.S., Murashev A.N. Protective effect of bisphosphonates on the pathological changes in the blood and tissues in case of experimental atherosclerosis. Amer J Pharm Pharmacol 2016; 3(3): 14-19.


Review

For citations:


Yurieva E.A., Novikova N.N., Dlin V.V., Vozdvizhenskaya E.S. Molecular stress and chronic metabolic disorders. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2020;65(5):12-22. (In Russ.) https://doi.org/10.21508/1027-4065-2020-65-5-12-22

Views: 2007


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)