Preview

Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

PRKAG2-associated hypertrophic cardiomyopathy

https://doi.org/10.21508/1027-4065-2022-67-3-111-116

Abstract

Mutations in the PRKAG2 gene lead to hypertrophic cardiomyopathy in combination with Wolff—Parkinson—White syndrome. The cause of the development of heart damage is the deposition of glycogen in the myocardium and the conduction system of the heart with a violation of the metabolism of adenosine monophosphate-activated protein kinase. A feature of PRKAG2 hypertrophic cardiomyopathy is progressive conduction disturbances with the development of atrioventricular blockade and ventricular preexcitation syndrome with a high frequency of paroxysmal supraventricular tachycardia against the background of additional atrioventricular fenestrations (Wolff—Parkinson—White syndrome). Progressive heart failure, high frequency of sudden cardiac death at a young age are characteristic. The features of diagnosis and treatment are considered.

About the Author

I. V. Leontyeva
Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
Russian Federation

 Moscow 



References

1. Elliott P.M., Anastasakis A., Borger M.A., Borggrefe M., Cecchi F., Charron P. et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology. Eur Heart J 2014; 35: 2733–2779. DOI: 10.1093/eurheartj/ehu284

2. Maron B., Rowin E., Casey S., Lesser J., Garberich R., McGriff D.M., Maron M.S. Hypertrophic Cardiomyopathy in Children, Adolescents, and Young Adults Associated With Low Cardiovascular Mortality With Contemporary Management Strategies. Circulation 2016; 133(1): 62–73. DOI: 10.1161/circulationaha.115.01763

3. Lipshultz S.E., Orav E.J., Wilkinson J. D., Towbin J.A., Messere J.E., Lowe A.M. et al. Risk stratification at the time of diagnosis for children with hypertrophic cardiomyopathy: a report from the Pediatric Cardiomyopathy Registry Study Group. Lancet 2013; 382(9908): 1889–1897. DOI: 10.1016/S0140–6736(13)61685–2

4. Leontyeva I.V. Differential diagnosis of hypertrophic cardiomyopathy. Rossiyskiy vestnik perinatologii i pediatrii 2017; 62(3): 20–31. (in Russ.)

5. Arad M., Maron B.J., Gorham J.M., Johnson W.H. Jr., Saul J.P., Perez-Atayde A.R. et al. Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N Engl J Med 2005; 352: 362–372. DOI: 10.1056/NEJMoa033349

6. Blair E., Redwood C., Ashrafian H., Oliveira M., Broxholme J., Kerr В., Salmon А. et al. Mutations in the gamma (2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet 2001; 10: 1215–1220. DOI: 10.1093/hmg/10.11.1215

7. Lopez-Sainz A., Dominguez F., Lopes L.R., Ochoa J.P., Barriales-Villa R., Climent V. et al. Clinical Features and Natural History of PRKAG2 Variant Cardiac Glycogenosis J Am Coll Cardiol 2020; 76(2): 186–197. DOI: 10.1016/j.jacc.2020.05.029

8. Murphy R.T., Mogensen J., McGarry K., Bahl A., Evans A., Osman E. Adenosine monophosphate-activated protein kinase disease mimicks hypertrophic cardiomyopathy and Wolff–Parkinson–White syndrome: natural history. J Am Coll Cardiol 2005; 45: 922–930. DOI: 10.1016/j.jacc.2004.11.053

9. Porto A.G., Brun F., Severini G.M., Losurdo P., Fabris E., Taylor M.R.G. et al. Clinical Spectrum of PRKAG2 Syndrome. Circ Arrhythm Electrophysiol 2016; 9: e003121. DOI: 10.1161/CIRCEP.115.003121

10. MacRae С.A., Ghaisas N., Kass S., Donnell S., Basson C., Watkins H. et al. Familial Hypertrophic cardiomyopathy with Wolff–Parkinson–White syndrome maps to a locus on chromosome 7q3 l. Clin Invest 1995; 96(3): 1216–1220. DOI: 10.1172/JCI118154

11. Yang K.Q., Lu C.X., Zhang Y., Yang Y.K., Li J.C., Lan T. et al. A novel PRKAG2 mutation in a Chinese family with cardiac hypertrophy and ventricular pre-excitation. Sci Rep 2017; 7(1): 2407. DOI: 10.1038/s41598-017-02455-z

12. Lang T., Yu L., Tu Q., Jiang J., Chen, Z., Xin Y. et al. Molecular cloning, genomic organization, and mapping of PRKAG2, a heart abundant Ȗ2 subunit of 5 -AMP-activated protein kinase, to human chromosome 7q36. Genomics 2000; 70: 258–263. DOI: 10.1006/geno.2000.6376

13. Merante F., Tein I., Benson L., Robinson B.H. Maternally inherited hypertrophic cardiomyopathy due to a novel T-to-C transition at nucleotide 9997 in the mitochondrial tRNA (glycine) gene. Am J Hum Genet 1994; 55: 437–446.

14. Puccio H., Koenig M. Recent advances in the molecular pathogenesis of Friedreich ataxia. Hum Mol Genet 2000; 9: 887–892. DOI: 10.1093/hmg/9.6.887

15. Bonnet D., Martin D., De Lonlay P., Villain E., Jouvet P., Rabier D. et al. Arrhythmias and conduction defects as presenting symptoms of fatty acid oxidation disorders in children. Circulation 1999; 100: 2248–2253. DOI: 10.1161/01.cir.100.22.2248

16. Arad M., Moskowitz I.P., Patel V.V., Ahmad F., PerezAtayde A.R., Sawyer D.B. et al. Transgenic mice overexpressing mutant PRKAG2 define the cause of Wolff–Parkinson–white syndrome in glycogen storage cardiomyopathy. Circulation 2003; 107: 2850–2856. DOI: 10.1161/01.CIR.0000075270.13497.2B

17. Banankhah P., Fishbein G.A., Dota A., Ardehali R. Cardiac manifestations of PRKAG2 mutation. BMC Med Genet 2018; 19(1): 1. DOI: 10.1186/s12881-017-0512-6

18. Gollob M.H., Green M.S., Tang A.S., Roberts R. PRKAG2 cardiac syndrome: familial ventricular preexcitation, conduction system disease, and cardiac hypertrophy. Curr Opin Cardiol 2002; 17: 229–234. DOI: 10.1097/00001573-200205000-00004

19. Sternick E.B., Oliva A., Gerken L.M., Hong K., Santana O., Brugada P. et al. Clinical, electrocardiographic, and electrophysiologic characteristics of patients with a fasciculoventricular pathway: the role of PRKAG2 mutation. Hear Rhythm 2011; 8: 58–64. DOI: 10.1016/j.hrthm.2010.09.081

20. Wolf C.M., Arad M., Ahmad F., Sanbe A., Bernstein S.A., Toka O. et al. Reversibility of PRKAG2 glycogen-storage cardiomyopathy and electrophysiological manifestations. Circulation 2008; 117: 144–154. DOI: 10.1161/CIRCULATIONAHA.107.726752

21. Gollob M. H., Seger J. J., Gollob T. N., Tapscott Т., Gonzales О., Bachinski L., Roberts R. Novel PRKAG2 mutation responsible for the genetic syndrome of ventricular preexcitation and conduction system disease with childhood onset and absence of cardiac hypertrophy. Circulation 2001; 104: 3030–3033. DOI: 10.1161/hc5001.102111

22. Thevenon J., Laurent G., Ader F., Laforêt P., Klug D., Duva Pentiah A. et al. High prevalence of arrhythmic and myocardial complications in patients with cardiac glycogenosis due to PRKAG2 mutations. Europace 2017; 19: 651–659. DOI: 10.1093/europace/euw067

23. van der Steld L.P., Campuzano O., Pérez-Serra A., Moura de Barros Zamorano M., Sousa Matos S., Brugada R. Wolff–Parkinson–White Syndrome with Ventricular Hypertrophy in a Brazilian Family. Am J Case Rep 2017; 18: 766–776. DOI: 10.12659/AJCR.904613

24. Sternick E.B., Oliva A., Magalhaes L.P., Gerken L.M., Hong K., Santana O. et al. Familial pseudo-Wolff–Parkinson–White syndrome. J Cardiovasc Electrophysiol 2006; 17: 724–732 DOI: 10.1111/j.1540-8167.2006.00485

25. Burwinkel B., Scott J.W., Buhrer C., van Landeghem F.K., Cox G.F., Wilson C.J. et al. Fatal congenital heart glycogenosis caused by a recurrent activating R531Q mutation in the gamma 2-subunit of AMP-activated protein kinase (PRKAG2), not by phosphorylase kinase deficiency. Am J Hum Genet 2005; 76: 1034–1049. DOI: 10.1086/430840

26. Zhang L.P., Hui B., Gao B.R. High risk of sudden death associated with a PRKAG2-related familial Wolff–Parkinson–White syndrome. J Electrocardiol 2011; 44: 483–486. DOI: 10.1016/j.jelectrocard.2010.02.009

27. Fabris E., Brun F., Porto A.G., Losurdo P., Vitali Serdoz L., Zecchin M. et al. Cardiac hypertrophy, accessory pathway, and conduction system disease in an adolescent: the PRKAG2 cardiac syndrome. J Am Coll Cardiol 2013; 62(9): e17. DOI: 10.1016/j.jacc.2013.02.099

28. Lorenzini M., Anastasiou Z., O’Mahony C., Gimeno J.R., Monserrat L., Anastasakis А. et al. Mortality among referral patients with hypertrophic cardiomyopathy vs the general European population. JAMA Cardiol 2020; 5: 73–80. DOI: 10.1001/jamacardio.2019.4534

29. Gandaeva L.A., Kondakova O.B., Basargina E.N., Pushkov A.A., Koloskova N.N., Zharova O.P. et al. Glycogen storage diseases: PRKAG2 syndrome. Rossiyskiy vestnik perinatologii i pediatrii 2022; 67 (2):133–137. (in Russ.)

30. Gene Therapy for Male Patients With Danon Disease (DD) Using RP-A501; AAV9.LAMP2B. Clinical Study Evaluating a Recombinant Adeno-Associated Virus Serotype 9 (rAAV9) Capsid Containing the Human Lysosome-Associated Membrane Protein 2 Isoform B (LAMP2B) Transgene (RP-A501; AAV9.LAMP2B) in Male Patients With DD (NCT03882437). https://ichgcp.net/ru/clinical-trials-registry/NCT03882437 / 16.04.2022


Review

For citations:


Leontyeva I.V. PRKAG2-associated hypertrophic cardiomyopathy. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2022;67(3):111-116. (In Russ.) https://doi.org/10.21508/1027-4065-2022-67-3-111-116

Views: 636


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)