Preview

Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Understanding the nature of atherogenic disorders in children

https://doi.org/10.21508/1027-4065-2023-68-2-5-12

Abstract

The article provides information about the nature of atherogenic disorders in children. Much attention is devoted to the problem of the pathogenesis of atherosclerosis, the substantiation of its stress theory, whereas nosological essence is rejected. Atherosclerosis is considered as an evolutionary, genetically determined pathophysiological process that accompanies a person from conception to death, affecting the health quality and life expectancy. Attention is drawn to the issues of susceptibility to atherogenic disorders in children, which explanation allows us to solve the problems of their prevention and prophylaxis.

About the Authors

E. V. Neudakhin
V.F. Voyno-Yasenetsky Scientific and Practical Center of Specialized Medical Care for Children
Russian Federation

Moscow



Т. V. Kozhanova
V.F. Voyno-Yasenetsky Scientific and Practical Center of Specialized Medical Care for Children; Pirogov Russian National Research Medical University
Russian Federation

Moscow



A. A. Abramov
V.F. Voyno-Yasenetsky Scientific and Practical Center of Specialized Medical Care for Children; RUDN University
Russian Federation

Moscow



References

1. Neudakhin E.V., Moreno I.G. To the question of the pathogenesis of atherosclerosis and the correction of atherogenic disorders in children. RMZh Mat’ i ditya 2018; 9:62–68. (in Russ.)

2. Neudakhin E.V. Chronic stress in general pathology in children. Voprosy detskoi dietologii 2014; 12(5): 44–49. (in Russ.)

3. Peterlin A., Petrovič D., Peterlin B. Screening for Rare Genetic Variants Associated with Atherosclerosis: Opportunity for Personalized Medicine. Curr Vasc Pharmacol 2019; 17(1): 25–28. DOI: 10.2174/1570161116666180206111725

4. Hegele R.A., Ban M.R., Cao H., McIntyre A.D., Robinson J.F., Wang J. Targeted next-generation sequencing in monogenic dyslipidemias. Curr Opin Lipido 2015; 26(2): 103–113. DOI: 10.2174/1570161116666180206111725

5. Fouchier S.W., Dallinga-Thie G.M., Meijers J.C., Zelcer N., Kastelein J.J. et al. Mutations in STAP1 are associated with autosomal dominant hypercholesterolemia. Circ Res 2014; 115: 552–555. DOI: 10.1161/CIRCRESAHA.115.304660

6. Ding Q., Strong A., Patel K.M., Ng S.L., Gosis B.S. et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circulation Res 2014; 115: 488–492. DOI: 10.1161/CIRCRESAHA.115.304660

7. Aavik E., Babu M., Yla-Herttuala S. DNA methylation processes in atherosclerotic plague. Atherosclerosis 2019; 281: 168–169. DOI: 10.1016/j.atherosclerosis.2018.12.006

8. Jiang W., Agrawal D.K., Boosani C.S. Cellspecific histone modifications in atherosclerosis (review). Mol Med Rep 2018; 18 (2): 1215–1224. DOI: 10.3892/mmr.2018.9142

9. Constantino S., Libby P., Kishore R., Tardif JC., El-Osta., Paneni F. Epigenetics and precision medicine in cardiovascular patients: from basic concepts to the clinical arena. Eur Heart J 2018; 39(47): 4150–4158. DOI: 10.3892/mmr.2018.9142

10. Korobkova E.O., Kozhevnikova M.V., Ilgisoniks I.S. Metabolic profiling of patients with metabolic syndrome. Kardiologiya 2020; 60(3): 37–62. (in Russ.) DOI: 10.18087/cardio.2020.3.n903

11. Young J., Stone W.L. Pediatric proteomics: an introduction. Front Biosci 2012; 4: 1078–1087. DOI: 10.2741/s319

12. Kopec G., Shekhawat P.S., Mhanna M.J. Prevalence of diabetes and obesity in association with prematurity and growth restriction. Diabetes Metab Syndr Obes 2017; 10: 285–295. DOI: 10.2147/DMSO.S115890

13. Godfrey K.M., Barker D.J.P. Fetal programming and adult health Public. Health Nutrition 2007; 4(2b): 611–624. DOI: 10.1079/phn2001145

14. Barker D.J., Osmond C., Forsen T.J., Kajantie E., Eriksson J.G. Trajectoies of growth among children who have coronary events as adults. N Engl J Med 2005; 353(17): 1802–1809. DOI: 10.1056/NEJMoa044160

15. Lane R.H. Fetal programming epigenetic and adult-onset disease. Clin Perinatol 2014; 41(4): 815–831. DOI: 10.1016/j.clp.2014.08.006

16. Van Otterdijk S.G., Michels K.B. Transgenerational epigenetic inheritance in mammals: how good is the epigenetic? Faseb J 2016; 30(7): 24570–24654. DOI: 10.1096/fj.201500083

17. Morgan H.L., Watkins A.J. Transgenerational impact of environmental change. Adv Exp Med Biol 2019; 1200: 71–89. DOI: 10.1007/978–3–030–23633–5 -4

18. Neudakhin E.V., Moreno I.G. Deepening of ideas about some mechanisms of chronic stress formation. Voprosy prakticheskoi pediatrii 2016; 11(54): 28–37. (in Russ.) DOI: 10.20953/1817–7646–2016–5–28–37

19. Belyaeva L.E., Pavlyukevich A.N. Early programming of human diseases and preventive use of nutraceuticals: focus on fish oils. Literature review. Part I. Vestnik VGMU 2019; 18(4): 7–16. (in Russ.) DOI: 10.22263/2312–4156.2019.4.7

20. Tzschoppe A.I., von Kries R., Struwe E., Rascher W., Dörr H.G. et al. Intrauterine growth Restriction (IUGR) Induces Signs of Subclinical Ateroclerosis in 6-Year-old infants Despite Absence of Excessive Growth. Kein Pediatr 2017; 229(4): 209– 215. DOI: 10.1055/s-0043–104528

21. Van de Maele K., Devliger R., Gies I. In utero programming and early detection of cardiovascular disease in the offspring of mothers with obesity. Atherosclerosis 2018; 275: 182–195. DOI: 10.1016/jatherosclerosis2018.06.016

22. Yao B.C., Meng L.B., Hao M.L., Zhang Y.M., Gong T., Guo Z.G. Chronic stress a critical risk factor for atherosclerosis. J Int Med Res 2019; 47(4): 1429–1440. DOI: 10.1177/0300060519826820


Review

For citations:


Neudakhin E.V., Kozhanova Т.V., Abramov A.A. Understanding the nature of atherogenic disorders in children. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2023;68(2):5-12. (In Russ.) https://doi.org/10.21508/1027-4065-2023-68-2-5-12

Views: 383


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)