

Features of the gut microbiota in children with chronic liver diseases
https://doi.org/10.21508/1027-4065-66-XX
Abstract
The value of the liver–gut axis is increasingly recognized as a major modulator of autoimmunity. There is no comparative analysis of data on the taxonomic diversity of the intestinal microbiota in chronic liver diseases in children.
Purpose. To investigate the taxonomic diversity of the intestinal microbiota in children with chronic liver diseases compared with healthy patients, to identify differences in bacterial diversity in autoimmune and non-autoimmune liver diseases, as well as the impact of immunosuppressive therapy on the intestinal microbiota.
Material and methods. A metagenomic analysis of the gut microbiota of 24 children with chronic liver diseases (mean age 10,3 ± 4,7 years) was carried out with the identification of the V3–V4 region of the 16S rRNA gene. The group included 18 children with autoimmune liver diseases and 6 children with non-autoimmune liver diseases. The control group consisted of fecal samples of 34 apparently healthy children.
Results. When comparing fecal samples of children with autoimmune liver diseases with samples of healthy children, the taxa of Bacteroides dorei, Collinsella aerofaciens, Ruminococcus caffidurs prevailed, and for children of the control group — Neisseria flavescens. When comparing samples of patients with non-autoimmune liver diseases and the control group, it was found that the taxa Bacteroides fragilis, Klebsiella pneumoniae, Bifidobacterium longum prevailed in healthy children. When comparing fecal samples from children with autoimmune and non-autoimmune liver diseases, it was found that Veillonella dispar, Cloacibacillus porcorum, Veillonella parvula, Prevotella histicola and Bacteroides eggerthii taxa dominate in patients with non-autoimmune diseases. No dominant taxa of the gut microbiota were found in children with autoimmune liver diseases. It has been established that the taxa Veillonella dispar, Faecalibacterium prausnitzii, Roseburia inulinivorans, Bacteroides xylanisolvens and Alistipes obesi prevail in patients receiving immunosuppressive therapy, and the taxa Phascolarctobacterium succinatutens, Bacteroides ovatus, Solobacterium mooreis and Holdemanella massilien prevail in patients not receiving immunosuppressive therapy.
Conclusion. A recent study of the gut microbiota in children with chronic liver disease shows differences in the imbalance of the gut microbiota compared to the results obtained in adults. The gut microbiota model is capable of distinguishing autoimmune liver diseases from non-autoimmune diseases. Immunosuppressive therapy is accompanied by the dominance of taxa that reduce the production of short-chain fatty acids.
About the Authors
G. V. VolynetsRussian Federation
Moscow
A. S. Potapov
Russian Federation
Moscow
A. V. Nikitin
Russian Federation
Moscow
L. G. Danilov
Russian Federation
Saint Petersburg
T. A. Skvortsova
Russian Federation
Moscow
V. V. Dudurich
Russian Federation
Saint Petersburg
References
1. Mieli-Vergani G., Vergani D., Baumann U., Czubkowski P., Debray D., Dezsofi A. et al. Diagnosis and Management of Pediatric Autoimmune Liver Disease: ESPGHAN Hepatology Committee Position Statement. J Pediatr Gastroenterol Nutr 2018; 66(2): 345–360. DOI: 10.1097/MPG.0000000000001801
2. Webb G.J., Hirschfield G.M., Krawitt E.L., Gershwin M.E. Cellular and Molecular Mechanisms of Autoimmune Hepatitis. Annu Rev Pathol 2018; 13: 247–292. DOI: 10.1146/annurev-pathol-020117–043534
3. Mieli-Vergani G., Vergani D., Czaja A.J., Manns M.P., Krawitt E.L., Vierling J.M. et al. Autoimmune hepatitis. Nat Rev Dis Primers 2018; 4: 18017. DOI: 10.1038/nrdp.2018.17
4. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Autoimmune hepatitis. J Hepatol 2015; 63(4): 971–1004. DOI: 10.1016/j.jhep.2015.06.030
5. Corrigan M., Hirschfield G.M., Oo Y.H., Adams D.H. Autoimmune hepatitis: an approach to disease understanding and management. Br Med Bull 2015; 114(1): 181–91. DOI: 10.1093/bmb/ldv021
6. Manns M.P., Lohse A.W., Vergani D. Autoimmune hepatitis — Update 2015. J Hepatol 2015; 62(1 Suppl): S100–11. DOI: 10.1016/j.jhep.2015.03.005
7. de Boer Y.S., van Gerven N.M., Zwiers A., Verwer B.J., van Hoek B., van Erpecum K.J. et al.; Dutch Autoimmune Hepatitis Study Group; LifeLines Cohort Study; Study of Health in Pomerania. Genome-wide association study identifies variants associated with autoimmune hepatitis type 1. Gastroenterology 2014; 147(2): 443–52.e5. DOI: 10.1053/j.gastro.2014.04.022
8. Webb G.J., Hirschfield G.M. Using GWAS to identify genetic predisposition in hepatic autoimmunity. J Autoimmun 2016; 66: 25–39. DOI: 10.1016/j.jaut.2015.08.016
9. Adolph T.E., Grander C., Moschen A.R., Tilg H. Liver-Microbiome Axis in Health and Disease. Trends Immunol 2018; 39(9): 712–723. DOI: 10.1016/j.it.2018.05.002
10. Kummen M., Holm K., Anmarkrud J.A., Nygård S., Vesterhus M., Høivik M.L. et al. The gut microbial profile in patients with primary sclerosing cholangitis is distinct from patients with ulcerative colitis without biliary disease and healthy controls. Gut 2017; 66(4): 611–619. DOI: 10.1136/gutjnl-2015–310500
11. Sabino J., Vieira-Silva S., Machiels K., Joossens M., Falony G., Ballet V. et al. Primary sclerosing cholangitis is characterised by intestinal dysbiosis independent from IBD. Gut 2016; 65(10): 1681–1689. DOI: 10.1136/gutjnl-2015–311004
12. Tang R., Wei Y., Li Y., Chen W., Chen H., Wang Q. et al. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy. Gut 2018; 67(3): 534–541. DOI: 10.1136/gutjnl-2016–313332
13. Tripathi A., Debelius J., Brenner D.A., Karin M., Loomba R., Schnabl B. et al. The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 2018; 15(7): 397–411. DOI: 10.1038/s41575–018–0011-z
14. Yuksel M., Wang Y., Tai N., Peng J., Guo J., Beland K. et al. A novel «humanized mouse» model for autoimmune hepatitis and the association of gut microbiota with liver inflammation. Hepatology 2015; 62(5): 1536–1550. DOI: 10.1002/hep.27998
15. Manfredo Vieira S., Hiltensperger M., Kumar V., Zegarra-Ruiz D., Dehner C., Khan N. et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 2018; 359(6380): 1156–1161. DOI: 10.1126/science.aar7201
16. Abe K., Takahashi A., Fujita M., Imaizumi H., Hayashi M., Okai K. et al. Dysbiosis of oral microbiota and its association with salivary immunological biomarkers in autoimmune liver disease. PLoS One 2018; 13(7): e0198757. DOI: 10.1371/journal.pone.0198757
17. Lv L., Jiang H., Chen X., Wang Q., Wang K., Ye J. et al. The Salivary Microbiota of Patients With Primary Biliary Cholangitis Is Distinctive and Pathogenic. Front Immunol 2021; 12: 713647. DOI: 10.3389/fimmu.2021.713647
18. He Y., Wu W., Zheng H.M., Li P., McDonald D., Sheng H.F. et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med 2018; 24(10): 1532–1535. DOI: 10.1038/s41591–018–0164-x
19. Huttenhower C., Gevers D., Knight R., Abubucker S., Badger J.H., Chinwalla A.T. et al. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486(7402): 207–14. DOI: 10.1038/nature11234
20. David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505(7484): 559–563. DOI: 10.1038/nature12820
21. Sonnenburg E.D., Smits S.A., Tikhonov M., Higginbottom S.K., Wingreen N.S., Sonnenburg J.L. Diet-induced extinctions in the gut microbiota compound over generations. Nature 2016; 529(7585): 212–215. DOI: 10.1038/nature16504
22. Modi S.R., Collins J.J., Relman D.A. Antibiotics and the gut microbiota. Clin Invest 2014; 124(10): 4212–4128. DOI: 10.1172/JCI72333
23. Maurice C.F., Haiser H.J., Turnbaugh P.J. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 2013; 152(1–2): 39–50. DOI: 10.1016/j.cell.2012.10.052
24. Gabarre P., Loens C., Tamzali Y., Barrou B., Jaisser F., Tourret J. Immunosuppressive therapy after solid organ transplantation and the gut microbiota: Bidirectional interactions with clinical consequences. Am J Transplant 2022; 22(4): 1014–1030. DOI: 10.1111/ajt.16836
25. Sonnenburg J.L., Backhed F. Diet-microbiota interactions as moderators of human metabolism. Nature 2016; 535(7610): 56–64. DOI: 10.1038/nature18846
26. Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J., Holmes S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 2016; 13(7): 581–583. DOI: 10.1038/nmeth.3869
27. Wei Y., Li Y., Yan L., Sun C., Miao Q., Wang Q. et al. Alterations of gut microbiome in autoimmune hepatitis. Gut 2020; 69(3): 569–577. DOI: 10.1136/gutjnl-2018–317836
28. Zhao L. The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol 2013; 11: 639–647. DOI: 10.1038/nrmicro3089
29. Imajo K., Fujita K., Yoneda M., Nozaki Y., Ogawa Y., Shinohara Y. et al. Hyperresponsivity tolow-dose endotoxin during progression to nonalcoholic steatohepatitis isregulated by leptin-mediated signaling. Cell Metab 2012; 16: 44–54. DOI: 10.1016/j.cmet.2012.05.012
30. Gevers D., Kugathasan S., Denson L.A., Vázquez-Baeza Y., Van Treuren W., Ren B. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 2014; 15: 382–392. DOI: 10.1016/j.chom.2014.02.005
31. Akberova D., Kiassov A.P., Abdulganieva D. Serum Cytokine Levels and Their Relation to Clinical Features in Patients with Autoimmune Liver Diseases. J Immunol Res 2017; 2017: 9829436. DOI: 10.1155/2017/9829436
32. Yoshida N., Emoto T., Yamashita T., Watanabe H., Hayashi T., Tabata T. et al. Bacteroides vulgatus and Bacteroides dorei Reduce Gut Microbial Lipopolysaccharide Production and Inhibit Atherosclerosis. Circulation 2018; 138(22): 2486–2498. DOI: 10.1161/CIRCULATIONAHA.118.033714
33. Koh A., De Vadder F., Kovatcheva-Datchary P., Bäckhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016; 165(6): 1332–1345. DOI: 10.1016/j.cell.2016.05.041
34. Kriss M., Hazleton K.Z., Nusbacher N.M., Martin C.G., Lozupone C.A. Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. Curr Opin Microbiol 2018; 44: 34–40. DOI: 10.1016/j.mib.2018.07.003
35. Kelly C.J., Zheng L., Campbell E.L., Saeedi B., Scholz C.C., Bayless A.J. et al. Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function. Cell Host Microbe 2015; 17(5): 662–671. DOI: 10.1016/j.chom.2015.03.005
36. Wu T., Yang L., Jiang J., Ni Y., Zhu J., Zheng X. et al. Chronic glucocorticoid treatment induced circadian clock disorder leads to lipid metabolism and gut microbiota alterations in rats. Life Sci 2018; 192: 173–182. DOI: 10.1016/j.lfs.2017.11.049
37. Tourret J., Willing B.P., Dion S., MacPherson J., Denamur E., Finlay B.B. Immunosuppressive Treatment Alters Secretion of Ileal Antimicrobial Peptides and Gut Microbiota, and Favors Subsequent Colonization by Uropathogenic Escherichia coli. Transplantation 2017; 101(1): 74–82. DOI: 10.1097/TP.0000000000001492
38. He Z., Kong X., Shao T., Zhang Y., Wen C. Alterations of the Gut Microbiota Associated With Promoting Efficacy of Prednisone by Bromofuranone in MRL/lpr Mice. Front Microbiol 2019; 10: 978. DOI: 10.3389/fmicb.2019.00978
39. Huang E.Y., Inoue T., Leone V.A., Dalal S., Touw K., Wang Y. et al. Using corticosteroids to reshape the gut microbiome: implications for inflammatory bowel diseases. Inflamm Bowel Dis 2015; 21(5): 963–972. DOI: 10.1097/MIB.0000000000000332
40. Steiner R.W., Awdishu L. Steroids in kidney transplant patients. Semin Immunopathol 2011; 33(2): 157–167. DOI: 10.1007/s00281–011–0259–7
41. Rodríguez-Piñeiro A.M., Johansson M.E. The colonic mucus protection depends on the microbiota. Gut Microbes 2015; 6(5): 326–330. DOI: 10.1080/19490976.2015.1086057
42. Bunker J.J., Flynn T.M., Koval J.C., Shaw D.G., Meisel M., McDonald B.D. et al. Innate and Adaptive Humoral Responses Coat Distinct Commensal Bacteria with Immunoglobulin A. Immunity 2015; 43(3): 541–553. DOI: 10.1016/j.immuni.2015.08.007
43. Sommer F., Anderson J.M., Bharti R., Raes J., Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol 2017; 15(10): 630–638. DOI: 10.1038/nrmicro.2017.58
44. Kim H.B., Wang Y., Sun X. A Detrimental Role of Immunosuppressive Drug, Dexamethasone, During Clostridium difficile Infection in Association with a Gastrointestinal Microbial Shift. J Microbiol Biotechnol 2016; 26(3): 567–571. DOI: 10.4014/jmb.1512.12017
45. Liu F., Ma R., Riordan S.M., Grimm M.C., Liu L., Wang Y. et al. Azathioprine, Mercaptopurine, and 5-Aminosalicylic Acid Affect the Growth of IBD-Associated Campylobacter Species and Other Enteric Microbes. Front Microbiol 2017; 8: 527. DOI: 10.3389/fmicb.2017.00527
46. Swidsinski A., Loening-Baucke V., Bengmark S., Lochs H., Dörffel Y. Azathioprine and mesalazine-induced effects on the mucosal flora in patients with IBD colitis. Inflamm Bowel Dis 2007; 13(1): 51–56. DOI: 10.1002/ibd.20003
47. Mousa O.Y., Juran B.D., McCauley B.M., Vesterhus M.N., Folseraas T., Turgeon C.T. et al. Bile Acid Profiles in Primary Sclerosing Cholangitis and Their Ability to Predict Hepatic Decompensation. Hepatology 2021; 74(1): 281–295. DOI: 10.1002/hep.31652
48. Watanabe Y., Nagai F, Morotomi M. Characterization of Phascolarctobacterium succinatutens sp. nov., an asaccharolytic, succinate-utilizing bacterium isolated from human feces. Appl Environ Microbiol 2012; 78(2): 511–518. DOI: 10.1128/AEM.06035–11
49. Morgan X.C., Tickle T.L., Sokol H., Gevers D., Devaney K.L., Ward D.V. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 2012; 13(9): R79. DOI: 10.1186/gb-2012–13–9-r79
50. Horvath T.D., Ihekweazu F.D., Haidacher S.J., Ruan W., Engevik K.A., Fultz R. et al. Bacteroides ovatus colonization influences the abundance of intestinal short chain fatty acids and neurotransmitters. Science 2022; 25(5): 104158. DOI: 10.1016/j.isci.2022.104158
Review
For citations:
Volynets G.V., Potapov A.S., Nikitin A.V., Danilov L.G., Skvortsova T.A., Dudurich V.V. Features of the gut microbiota in children with chronic liver diseases. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2023;68(4):66-76. (In Russ.) https://doi.org/10.21508/1027-4065-66-XX