Preview

Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Specific features of endocrine regulation of plastic processes in premature infants and children small for gestational age

https://doi.org/10.21508/1027-4065-2023-68-5-11-16

Abstract

Low-birthweight and preterm infants have high risk of obesity and obesity-related diseases in the future. This review article identifies risk factors and endocrine biomarkers with greatest predictive value to the metabolic diseases development. Low concentrations of IGF-1 in low-birthweight children are associated with adipogenesis. Low leptin levels may be considered as a biomarker of catch-up growth. Long term programming effects of in utero exposure to leptin extend beyond infancy into early childhood. Adiponectin levels are positively correlated with obesity in early life, but not at ages older than three years. Rapid postnatal growth rate is associated with metabolic syndrome.
Conclusion. Specific features of endocrine regulation of growth and dynamics of plastic processes in premature infants and SGA children are associated with excessive accumulation of adipose tissue, which can function as a mechanism for metabolic programming of distant endocrine and cardiometabolic disorders.

About the Authors

M. R. Shaydullina
Children’s Republic Clinical Hospital; Kazan State Medical University
Russian Federation

Kazan



A. T. Mansurova
Kazan State Medical University
Russian Federation

Kazan



References

1. Peterkova V.A., Bezlepkina O.B., Laptev D.N., Zilberman L.I., Eremina I.A. et al. Clinical guidelines «Diabetes mellitus type 2 in childhood» 2020; 68. (in Russ.) https://www.endocrincentr.ru/sites/default/files/specialists/science/clinic-recomendations/sd2_deti_07.04.2012_1.pdf / Ссылка активна на 26.07.2023.

2. Web Supplement. Evidence base. In: WHO recommendations for care of the preterm or low-birth-weight infant. Geneva: World Health Organization; 2022. https://apps.who.int/iris/bitstream/handle/10665/363697/9789240058262-eng.pdf / Ссылка активна на 26.07.2023.

3. International statistical classification of diseases and related health problems, 10th revision, Fifth edition; World Health Organization; 2016. https://apps.who.int/iris/handle/10665/246208 / Ссылка активна на 26.07.2023.

4. Hodzhaeva Z.S., Shmakov R.G., Yarygina T.A., Holin A.M., Dolgushina N.V., Kan N.E. Clinical guidelines «Insufficient growth of the fetus, requiring the provision of medical care to the mother (fetal growth retardation)», 2020; 71. (in Russ.) https://rd2rzn.ru/storage/web/source/1/mVMbBZ9ZPVgzNyy-7WiqokbYt60uEfid.pdf / Ссылка активна на 26.07.2023.

5. Blencowe H., Krasevec J., de Onis M., Black R. E., An X., Stevens G. A. et al. National, regional, and worldwide estimates of low birthweight in 2015, with trends from 2000: a systematic analysis. Lancet Global Health 2019; 7(7): e849–e860. DOI:10.1016/S2214–109X(18)30565–5

6. Gillman M.W., Barker D., Bier D., Cagampang F., Challis J., Fall C. et al. Meeting report on the 3rd International Congress on Developmental Origins of Health and Disease (DOHaD). Pediatr Res 2007; 61(5 Pt 1): 625–629. DOI: 10.1203/pdr.0b013e3180459fcd

7. Fall C.H., Kumaran K. Metabolic programming in early life in humans. Philosophical Transactions of The Royal Society of London 2019; 374 (1770): 20180123. DOI: 10.1098/rstb.2018.0123

8. Fleming T.P., Watkins A.J., Velazquez M.A., Mathers J.C., Prentice A. M., Stephenson J. et al. Origins of lifetime health around the time f conception: causes and consequences. Lancet 2018; 391: 1842–1852 DOI: 10.1016/S0140–6736(18)30312-X

9. Deodati A., Inzaghi E., Cianfarani S. Epigenetics and In Utero Acquired Predisposition to Metabolic Disease. Front Genet 2020; 10: 1270. DOI: 10.3389/fgene

10. Wang Y.X., Ding M., Li Y., Wang L., Rich-Edwards J. W., Florio A. A. et al. Birth weight and long-term risk of mortality among US men and women: Results from three prospective cohort studies. Lancet Region Health 2022; 15: 100344. DOI: 10.1016/j.lana.2022.100344

11. Knop M.R., Geng T.T., Gorny A.W., Ding R., Li C. et al. Birth Weight and Risk of Type 2 Diabetes Mellitus, Cardiovascular Disease, and Hypertension in Adults: A Meta-Analysis of 7 646 267 Participants From 135 Studies. J Am Heart Assoc 2018; 7(23): e008870. DOI: 10.1161/JAHA.118.008870

12. Yun J., Jung Y.H., Shin S.H., Song I.G., Lee Y.A., Shin C.H. et al. Impact of very preterm birth and post-discharge growth on cardiometabolic outcomes at school age: a retrospective cohort study. BMC Pediatr 2021; 21(1): 373. DOI: 10.1186/s12887–021–02851–5

13. Hellström A., Ley D., Hansen-Pupp I., Hallberg B., Ramenghi L.A., Löfqvist C. et al. Role of Insulinlike Growth Factor 1 in Fetal Development and in the Early Postnatal Life of Premature Infants. Am J Perinatol. 2016; 33(11): 1067–1071. DOI: 10.1055/s-0036–1586109

14. Fu Z., Gilbert E.R., Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diab Rev 2013; 9(1): 25–53

15. Kulkarni R.N. New insights into the roles of insulin/IGF-I in the development and maintenance of beta-cell mass. Rev Endocrine Metab Dis 2005; 6(3): 199–210. DOI: 10.1007/s11154–005–3051-y

16. Kadakia R., Josefson J. The Relationship of Insulin-Like Growth Factor 2 to Fetal Growth and Adiposity. Hormone Res Paediatr 2016; 85(2): 75–82. DOI: 10.1159/000443500

17. Möllers L.S., Yousuf E.I., Hamatschek C., Morrison K.M., Hermanussen M., Fusch C., Rochow N. Metabolic-endocrine disruption due to preterm birth impacts growth, body composition, and neonatal outcome. Pediatr Res 2022; 91(6): 1350–1360. DOI: 10.1038/s41390–021–01566–8

18. He H., Zhu W.T., Nuyt A.M., Marc I., Julien P., Huang R. et al. Cord Blood IGF-I, Proinsulin, Leptin, HMW Adiponectin, and Ghrelin in Short or Skinny Small-for-Gestational-Age Infants. J Clin Endocrinol Metab 2021; 106(8): e3049–e3057. DOI: 10.1210/clinem/dgab178

19. Victora C.G., Villar J., Barros F.C., Ismail L.C., Chumlea C., Papageorghiou A.T. et al. International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st). Anthropometric Characterization of Impaired Fetal Growth: Risk Factors for and Prognosis of Newborns With Stunting or Wasting. JAMA Pediatr 2015; 169(7): e151431. DOI: 10.1001/jamapediatrics.2015.1431

20. Kühl A.M., Tortorella C.C.S., Almeida C.C.B., Gomes Dias M.R.M., Pereira R.M. Growth hormone effect on body composition of children born small for gestational age: a systematic review. J De Pediatria (Rio J) 2023; 99(3): 219–227. DOI: 10.1016/j.jped.2022.11.010

21. van der Steen M., Smeets C.C., Kerkhof G.F., Hokken-Koelega A.C. Metabolic health of young adults who were born small for gestational age and treated with growth hormone, after cessation of growth hormone treatment: a 5-year longitudinal study. Lancet Diab Endocrinol 2017; 5(2): 106–116. DOI: 10.1016/S2213–8587(16)30422–3

22. Hellström A., Ley D., Hansen-Pupp I., Hallberg B., Löfqvist C., van Marter L. et al. Insulin-like growth factor 1 has multisystem effects on foetal and preterm infant development. Acta Paediatrica 2016; 105(6): 576–586. DOI: 10.1111/apa.13350

23. Hansen-Pupp I., Hellström A., Hamdani M., Tocoian A., Kreher N.C. et al. Continuous longitudinal infusion of rhIGF-1/rhIGFBP-3 in extremely preterm infants: Evaluation of feasibility in a phase II study. Growth Hormone IGF Res 2017; 36: 44–51. DOI: 10.1016/j.ghir.2017.08.004

24. Guha N., Nevitt S.P., Francis M., Böhning W., Böhning D. et al. The effects of recombinant human insulin-like growth factor-1/insulin-like growth factor binding protein-3 administration on lipid and carbohydrate metabolism in recreational athletes. Clin Endocrinol (Oxf) 2021; 94(4): 551–562. DOI: 10.1111/cen.14370

25. Chung J.K., Hallberg B., Hansen-Pupp I., Graham M.A., Fetterly G, Sharma J et al. Development and verification of a pharmacokinetic model to optimize physiologic replacement of rhIGF-1/rhIGFBP-3 in preterm infants. Pediatr Res 2017; 81(3): 504–510. DOI: 10.1038/pr.2016.255

26. Pekal Y., Özhan B., Enli Y., Özdemir Ö.M.A., Ergin H. Cord Blood Levels of Spexin, Leptin, and Visfatin in Term Infants Born Small, Appropriate, and Large for Gestational Age and Their Association with Newborn Anthropometric Measurements. J Clin Res Pediatr Endocrinol 2022; 14(4): 444–452. DOI: 10.4274/jcrpe.galenos.2022.2022–4–24

27. Markova T.N., Mishchenko N.K., Petina D.V. Adipocytokines: modern definition, classification and physiological role. Problemy endokrinologii 2021; 68(1): 73–80. (in Russ.) DOI: 10.14341/probl12805

28. Ramos-Lobo A.M., Teixeira P.D., Furigo I.C., Melo H.M., de M Lyra E Silva N. et al. Long-term consequences of the absence of leptin signaling in early life. Elife 2019; 8: e40970. DOI: 10.7554/eLife.40970

29. Steinbrekera B., Roghair R. Modeling the impact of growth and leptin deficits on the neuronal regulation of blood pressure. J Endocrinol 2016; 231(2): R47–R60. DOI: 10.1530/JOE-16–0273

30. Steinbrekera B., Colaizy T.T., Vasilakos L.K., Johnson K.J., Santillan D.A., Haskell S.E., Roghair R.D. Origins of neonatal leptin deficiency in preterm infants. Pediatr Res 2019; 85(7): 1016–1023. DOI: 10.1038/s41390–019–0359-y

31. Han L., Li B., Xu X., Liu S., Li Z., Wang D. Umbilical Cord Blood Adiponectin, Leptin, Insulin, and Ghrelin in Premature Infants and Their Association With Birth Outcomes. Front Endocrinol (Lausanne) 2021; 12: 738964. DOI: 10.3389/fendo.2021.738964

32. Bagias C., Sukumar N., Weldeselassie Y., Oyebode O., Saravanan P. Cord Blood Adipocytokines and Body Composition in Early Childhood: A Systematic Review and Meta-Analysis. Int J Environment Res Public Health 2021; 18(4): 1897. DOI: 10.3390/ijerph18041897

33. Buck C.O., Eliot M.N., Kelsey K.T., Chen A., Kalkwarf H., Lanphear B.P., Braun J.M. Neonatal Adipocytokines and Longitudinal Patterns of Childhood Growth. Obesity (Silver Spring) 2019; 27(8): 1323–1330. DOI: 10.1002/oby.22519

34. Simpson J., Smith A.D., Fraser A., Sattar N., Lindsay R.S., Ring S.M. et al. Programming of Adiposity in Childhood and Adolescence: Associations With Birth Weight and Cord Blood Adipokines. J Clin Endocrinol Metab 2017; 102(2): 499–506. DOI: 10.1210/jc.2016–2342

35. Chaoimh C.N., Murray D.M., Kenny L.C., Irvine A.D., Hourihane J.O., Kiely M. Cord blood leptin and gains in body weight and fat mass during infancy. Eur J Endocrinol 2016; 175(5): 403–410. DOI: 10.1530/EJE-16–0431

36. Karakosta P., Roumeliotaki T., Chalkiadaki G., Sarri K., Vassilaki M., Venihaki M. et al. Cord blood leptin levels in relation to child growth trajectories. Metabolism 2016; 65: 874–882. DOI: 10.1016/j.metabol.2016.03.003

37. Meyer D.M., Brei C., Stecher L., Much D., Brunner S., Hauner H. Leptin in Maternal Plasma and Cord Blood as a Predictor of Offspring Adiposity at 5 Years: A Follow-up Study. Obesity (Silver Spring) 2018; 26(2): 279–283. DOI: 10.1002/oby.22037

38. Meyer D.M., Brei C., Stecher L., Much D., Brunner S., Hauner H. Cord blood and child plasma adiponectin levels in relation to childhood obesity risk and fat distribution up to 5 y. Pediatr Res 2017; 81(5): 745–751. DOI: 10.1038/pr.2016.275

39. Hendrix M.L.E., van Kuijk S.M.J., El Bahaey S.E., Gerver W.J.M., Feron F.J.M., Kuin M.E. et al. Postnatal growth during the first five years of life in SGA and AGA neonates with reduced fetal growth. Early Human Development 2020; 151: 105199. DOI: 10.1016/j.earlhumdev.2020.105199

40. Ou-Yang M.C., Sun Y., Liebowitz M., Chen C.C., Fang M.L., Dai W. et al. Accelerated weight gain, prematurity, and the risk of childhood obesity: A meta-analysis and systematic review. PLoS One 2020; 15(5): e0232238. DOI: 10.1371/journal.pone.0232238

41. Goedegebuure W.J., Van der Steen M., Smeets C.C.J., Kerkhof G.F., Hokken-Koelega A.C.S. SGA-born adults with postnatal catch-up have a persistently unfavourable metabolic health profile and increased adiposity at age 32 years. Eur J Endocrinol 2022; 187(1): 15–26. DOI: 10.1530/EJE21–1130

42. Kerkhof G.F., Hokken-Koelega A.C. Rate of neonatal weight gain and effects on adult metabolic health. Nature reviews. Endocrinology 2012; 8(11): 689–692. DOI: 10.1038/nrendo.2012.168

43. Arisaka O., Ichikawa G., Koyama S., Sairenchi T. Childhood obesity: rapid weight gain in early childhood and subsequent cardiometabolic risk. Clin Pediatr Endocrinol 2020; 29(4):135–142. DOI: 10.1297/cpe.29.135

44. Wu D., Zhu J., Wang X., Shi H., Huo Y., Liu M. et al. Rapid BMI Increases and Persistent Obesity in Small-for-Gestational-Age Infants. Front Pediatr 2021; 9: 625853. DOI: 10.3389/fped.2021.625853

45. Hickey L., Burnett A., Spittle A.J., Roberts G., Anderson P., Lee K. et al. Victorian Infant Collaborative Study Group. Extreme prematurity, growth and neurodevelopment at 8 years: a cohort study. Arch Dis Childhood 2021; 106(2): 160–166. DOI: 10.1136/archdischild-2019–318139

46. Cordova E.G., Cherkerzian S., Bell K., Joung K.E., Collins C.T., Makrides M. et al. Association of Poor Postnatal Growth with Neurodevelopmental Impairment in Infancy and Childhood: Comparing the Fetus and the Healthy Preterm Infant References. J Pediatr 2020; 225: 37–43.e5. DOI: 10.1016/j.jpeds.2020.05.063

47. Luo Z., You B., Zhang Y., Tang J., Zheng Z., Jia Y. et al. Nonlinear relationship between early postnatal weight gain velocity and neurodevelopmental outcomes in very-low birth weight preterm infants: A secondary analysis based on a published prospective cohort study. Front Pediatr 2022; 10: 944067. DOI: 10.3389/fped.2022.944067

48. Bishara R., Asbury M.R., Ng D.V.Y., Bando N., Ng E., Unger S. et al. Higher Energy, Lipid, and Carbohydrate Provision to Very Low-Birth-Weight Infants Is Differentially Associated With Neurodevelopment at 18 Months, Despite Consistent Improvements in Weight Gain. J Parenteral Enteral Nutrition 2021; 45(8): 1762–1773. DOI: 10.1002/jpen.2072

49. Gerull R., Huber E., Rousson V., Ahrens O., Fumeaux C.J.F., Adams M. et al. Association of growth with neurodevelopment in extremely low gestational age infants: a population-based analysis. Eur J Pediatr 2022; 181(10): 3673–3681. DOI: 10.1007/s00431–022–04567–9

50. Liu C., Wu B., Lin N., Fang X. Insulin resistance and its association with catch-up growth in Chinese children born small for gestational age. Obesity 2017; 25: 172–177. DOI: 10.1002/oby.21683

51. Xu Y., Chen S., Yang H., Gong F., Wang L., Jiang Y. et al. Decreased insulin sensitivity and abnormal glucose metabolism start in preadolescence in low-birth-weight children-Meta-analysis and systematic review. Prim Care Diab 2019; 13(5): 391–398. DOI: 10.1016/j.pcd.2019.03.012

52. Embleton N.D., Korada M., Wood C.L., Pearce M.S., Swamy R., Cheetham T.D. Catch-up growth and metabolic outcomes in adolescents born preterm. Arch Dis Childhood 2016; 101(11): 1026–1031. DOI: 10.1136/archdischild-2015–31019


Review

For citations:


Shaydullina M.R., Mansurova A.T. Specific features of endocrine regulation of plastic processes in premature infants and children small for gestational age. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2023;68(5):11-16. (In Russ.) https://doi.org/10.21508/1027-4065-2023-68-5-11-16

Views: 341


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)