Preview

Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Pathophysiological mechanisms and clinical consequences of exposure of the fetus and newborn to new psychoactive substances — “bath salts”

https://doi.org/10.21508/1027-4065-68-6-85-93

Abstract

The use of new psychoactive substances (NPS) is increasing every year among various social groups around the world. The use of narcotic drugs during pregnancy, according to various authors, remains at a high level from 2.8% to 7% of pregnant women. The use of new psychoactive substances during pregnancy is characterized by multi-organ damage to the fetus, like other groups of narcotic drugs, however, no organ and tissue specificity for new psychoactive substances has been described. Experimental studies have demonstrated negative pathophysiological mechanisms triggered by synthetic cathinones in the form of increased proapoptotic activity, the formation of autophagolysosomes and reactive oxygen species, and the pro-inflammatory orientation of the immune system. A clinical observation describes a predominant lesion of the nervous system (malformations of the brain, damage to the respiratory center) and the musculoskeletal system (pronounced myotonic syndrome, congenital pathological fractures of the femur), which leads to multiorgan dysfunction, an uncontrolled inflammatory response, and, as a result, to the development of severe disability in such children and growth of the cohort of palliative pediatric patients. In the presented literature review, the authors focus on the pathophysiological mechanisms of action of NPS for a better, deeper and more holistic understanding of the pathological process occurring in the body, in order to form and improve the clinical thinking of medical specialists and cite their own clinical observation as an illustration of the consequences of using new psychoactive substances during pregnancy. The authors believe that this review of the literature with a description of a clinical case is valuable in terms of practical applicability, both for clinicians in various fields and for researchers.

About the Authors

E. V. Loshkova
Siberian State Medical University; Reasearch Clinical Institute of Childhood of the Ministry of Health of the Moscow Region
Russian Federation

Tomsk



I. V. Doroshenko
Siberian State Medical University
Russian Federation

Tomsk



T. S. Lyulka
Siberian State Medical University
Russian Federation

Tomsk



Y. S. Rafikov
Siberian State Medical University
Russian Federation

Tomsk



V. A. Zhelev
Siberian State Medical University
Russian Federation

Tomsk



S. P. Ermolenko
Siberian State Medical University; Children’s City Hospital No. 1
Russian Federation

Tomsk



E. V. Mikhalev
Siberian State Medical University; Children’s City Hospital No. 1
Russian Federation

Tomsk



I. R. Grishkevich
Siberian State Medical University
Russian Federation

Tomsk



N. E. Melnikov
Children’s City Hospital No. 1
Russian Federation

Tomsk



A. L. Solnyshko
Children’s City Hospital No. 1
Russian Federation

Tomsk



A. A. Bogunetsky
Children’s City Hospital No. 1
Russian Federation

Tomsk



E. I. Kondratieva
Reasearch Clinical Institute of Childhood of the Ministry of Health of the Moscow Region; Bochkov Medical Genetic Research Center
Russian Federation

Moscow



A. I. Khavkin
Pirogov Russian National Research Medical University
Russian Federation

Moscow



N. D. Odinaeva
Reasearch Clinical Institute of Childhood of the Ministry of Health of the Moscow Region
Russian Federation

Moscow



E. I. Makarevich
Siberian State Medical University
Russian Federation

Tomsk



References

1. Palamar J.J., Su M.K., Hoffman R.S. Characteristics of novel psychoactive substance exposures reported to New York City Poison Center, 2011–2014. Am J Drug Alcohol Abuse 2016; 42(1): 39–47. DOI: 10.3109/00952990.2015.1106551

2. Wood K.E. Exposure to bath salts and synthetic tetrahydrocannabinol from 2009 to 2012 in the United States. J Pediatr 2013; 163(1): 213–216. DOI: 10.1016/j.jpeds.2012.12.056

3. Ebrahim S.H., Gfroerer J. Pregnancy-related substance use in the United States during 1996–1998. Obstet Gynecol 2003; 101(2): 374–379. DOI: 10.1016/s0029–7844(02)02588–7

4. Greenfield S.F., Manwani S.G., Nargiso J.E. Epidemiology of substance use disorders in women. Obstet Gynecol Clin North Am 2003; 30(3): 413–446. DOI: 10.1016/s0889–8545(03)00072-x

5. Chang J.C., Holland C.L., Tarr J.A., Rubio D., Rodriguez K.L., Kraemer K.L. et al. Perinatal Illicit Drug and Marijuana Use. Am J Health Promot 2017; 31(1): 35–42. DOI: 10.4278/ajhp.141215-QUAL-625

6. Gómez-Ruiz L.M., Marchei E., Rotolo M.C., Brunetti P., Mannocchi G., Acosta-López A. et al. Prevalence of Licit and Illicit Drugs Use during Pregnancy in Mexican Women. Pharmaceuticals (Basel) 2022; 15(3): 382. DOI: 10.3390/ph15030382

7. Gunn J.K., Rosales C.B., Center K.E., Nuñez A., Gibson S.J., Christ C., Ehiri J.E. Prenatal exposure to cannabis and maternal and child health outcomes: a systematic review and meta-analysis. BMJ Open. 2016; 6(4): e009986. DOI: 10.1136/bmjopen-2015–009986

8. Marchand G., Masoud A.T., Govindan M., Ware K., King A., Ruther S. et al. Birth Outcomes of Neonates Exposed to Marijuana in Utero: A Systematic Review and Meta-analysis. JAMA Netw Open 2022; 5(1): e2145653. DOI: 10.1001/jamanetworkopen.2021.45653

9. Reece A.S., Hulse G.K. Epidemiological overview of multidimensional chromosomal and genome toxicity of cannabis exposure in congenital anomalies and cancer development. Sci Rep 2021; 11(1): 13892. DOI: 10.1038/s41598–021–93411–5

10. Kalix P. A constituent of khat leaves with amphetamine-like releasing properties. Eur J Pharmacol 1980; 68(2): 213–215. DOI: 10.1016/0014–2999(80)90326-x

11. Hadlock G.C., Webb K.M., McFadden L.M., Chu P.W., Ellis J.D., Allen S.C. et al. 4-Methylmethcathinone (mephedrone): neuropharmacological effects of a designer stimulant of abuse. J Pharmacol Exp Ther 2011; 339(2): 530–536. DOI: 10.1124/jpet.111.184119

12. Pehek E.A., Schechter M.D., Yamamoto B.K. Effects of cathinone and amphetamine on the neurochemistry of dopamine in vivo. Neuropharmacology 1990; 29(12): 1171–1176. DOI: 10.1016/0028–3908(90)90041-o

13. den Hollander B., Sundström M., Pelander A., Ojanperä I., Mervaala E., Korpi E.R., Kankuri E. Keto amphetamine toxicity-focus on the redox reactivity of the cathinone designer drug mephedrone. Toxicol Sci 2014; 141(1): 120–131. DOI: 10.1093/toxsci/kfu108

14. López-Arnau R., Martínez-Clemente J., Rodrigo T., Pubill D., Camarasa J., Escubedo E. Neuronal changes and oxidative stress in adolescent rats after repeated exposure to mephedrone. Toxicol Appl Pharmacol 2015; 286(1): 27–35. DOI: 10.1016/j.taap.2015.03.015

15. Buzhdygan T.P., Rodrigues C.R., McGary H.M., Khan J.A., Andrews A.M., Rawls S.M., Ramirez S.H. The psychoactive drug of abuse mephedrone differentially disrupts blood-brain barrier properties. J Neuroinflammation 2021; 18(1): 63. DOI: 10.1186/s12974–021–02116-z

16. Martínez-Clemente J., López-Arnau R., Abad S., Pubill D., Escubedo E., Camarasa J. Dose and time-dependent selective neurotoxicity induced by mephedrone in mice. PLoS One 2014; 9(6): e99002. DOI: 10.1371/journal.pone.0099002

17. Tarkowski P., Jankowski K., Budzyńska B., Biała G., Boguszewska-Czubara A. Potential pro-oxidative effects of single dose of mephedrone in vital organs of mice. Pharmacol Rep 2018; 70(6): 1097–1104. DOI: 10.1016/j.pharep.2018.05.010

18. Naseri G., Fazel A., Golalipour M.J.., Haghir H., Sadeghian H., Mojarrad M. et al. Exposure to mephedrone during gestation increases the risk of stillbirth and induces hippocampal neurotoxicity in mice offspring. Neurotoxicol Teratol 2018; 67: 10–17. DOI: 10.1016/j.ntt.2018.03.001

19. Adám A., Gerecsei L.I., Lepesi N., Csillag A. Apoptotic effects of the ‘designer drug’ methylenedioxypyrovalerone (MDPV) on the neonatal mouse brain. Neurotoxicology 2014; 44: 231–236. DOI: 10.1016/j.neuro.2014.07.004

20. Yang Z., Klionsky D.J. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 2010; 22(2): 124–131. DOI: 10.1016/j.ceb.2009.11.014

21. Yang Z.J., Chee C.E., Huang S., Sinicrope F. Autophagy modulation for cancer therapy. Cancer Biol Ther 2011; 11(2): 169–176. DOI: 10.4161/cbt.11.2.14663

22. Valente M.J., Amaral C., Correia-da-Silva G., Duarte J.A., Bastos M.L., Carvalho F. et al. Methylone and MDPV activate autophagy in human dopaminergic SH-SY5Y cells: a new insight into the context of β-keto amphetamines-related neurotoxicity. Arch Toxicol 2017; 91(11): 3663–3676. DOI: 10.1007/s00204–017–1984-z

23. Matsunaga T., Morikawa Y., Kamata K., Shibata A., Miyazono H., Sasajima Y. et al. α-Pyrrolidinononanophenone provokes apoptosis of neuronal cells through alterations in antioxidant properties. Toxicology 2017; 386: 93–102. DOI: 10.1016/j.tox.2017.05.017

24. Siedlecka-Kroplewska K., Wrońska A., Stasiłojć G., Kmieć Z. The Designer Drug 3-Fluoromethcathinone Induces Oxidative Stress and Activates Autophagy in HT22 Neuronal Cells. Neurotox Res 2018; 34: 388–400. DOI: 10.1007/S12640– 018–9898-Y

25. Angoa-Pérez M., Kane M.J., Francescutti D.M., Sykes K.E., Shah M.M., Mohammed A.M. et al. Mephedrone, an abused psychoactive component of ‘bath salts’ and methamphetamine congener, does not cause neurotoxicity to dopamine nerve endings of the striatum. J Neurochem 2012; 120(6): 1097–1107. DOI: 10.1111/j.1471–4159.2011.07632. x

26. Marusich J.A., Gay E.A., Stewart D.A., Blough B.E. Sex differences in inflammatory cytokine levels following synthetic cathinone self-administration in rats. Neurotoxicology 2022; 88: 65–78. DOI: 10.1016/j.neuro.2021.11.002

27. Kim O.H., Jeon K.O., Jang E.Y. Alpha-pyrrolidinopentiothiophenone (α-PVT) activates the TLR-NF-κB-MAPK signaling pathway and proinflammatory cytokine production and induces behavioral sensitization in mice. Pharmacol Biochem Behav 2022; 221: 173484. DOI: 10.1016/j.pbb.2022.173484

28. Pichini S., Rotolo M.C., García J., Girona N., Leal L., García-Algar O., Pacifici R. Neonatal withdrawal syndrome after chronic maternal consumption of 4-methylethcathinone. Forensic Sci Int 2014; 245: e33–е35. DOI: 10.1016/j.forsciint.2014.10.027

29. Adamowicz P., Hydzik P. Fetal death associated with the use of 3,4-MDPHP and α-PHP. Clin Toxicol (Phila) 2019; 57(2): 112–116. DOI: 10.1080/15563650.2018.1502443

30. Grapp M., Kaufmann C., Ebbecke M. Toxicological investigation of forensic cases related to the designer drug 3,4-methylenedioxypyrovalerone (MDPV): Detection, quantification and studies on human metabolism by GC-MS. Forensic Sci Int 2017; 273: 1–9. DOI: 10.1016/j.forsciint.2017.01.021


Review

For citations:


Loshkova E.V., Doroshenko I.V., Lyulka T.S., Rafikov Y.S., Zhelev V.A., Ermolenko S.P., Mikhalev E.V., Grishkevich I.R., Melnikov N.E., Solnyshko A.L., Bogunetsky A.A., Kondratieva E.I., Khavkin A.I., Odinaeva N.D., Makarevich E.I. Pathophysiological mechanisms and clinical consequences of exposure of the fetus and newborn to new psychoactive substances — “bath salts”. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2023;68(6):85-93. (In Russ.) https://doi.org/10.21508/1027-4065-68-6-85-93

Views: 403


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)