Preview

Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Formation of cognitive processes in children with autism. Part I. Epigenetic mechanisms

https://doi.org/10.21508/1027-4065-2024-69-1-34-44

Abstract

   Autism and autism spectrum disorders are neuropsychiatric diseases that begin to appear in children under 3 years. Over the past decade, the number of children with autism spectrum disorders has increased more than in 10-fold and continues to grow, accounting for 1–2 % of the world’s population. Currently, the diagnosis of autism spectrum disorders is based only on clinical and behavioral tests, and there are no biological and genetic markers that could contribute to the early detection of this disorder. The review, based on the analysis of modern literature data about epigenetic mechanisms which associated with autism, examines the influence of the DNA methylation profile in the formation of cognitive impairment and the possibility of using genes and their methylation status as diagnostic biomarkers in children with autism spectrum disorders. Literature data analysis shows that disorders of attention, speed of information processing, working memory, learning are based on genetic and epigenetic (methylation) changes in the expression of many genes: BDNF, CAPS2, CNTNAP2, GABRB3, FMR1, FOXP1, GTF2I, HSD11B2, MECP2, NF2, NGF, NR3C1, OXTR, PAK2, RELN, SLC6A4, UBE3A, etc. Most of these genes undergo hypermethylation, reducing the expression of its proteins, which impairs the development and formation of the nervous system in autism. In contrast, other genes are associated with methylation and oxidative stress are hypomethylated in autism spectrum disorders. Assessing the expression levels and methylation status of these genes can serve as genetic and epigenetic biomarkers for the differentiation and diagnosis of clinical symptoms, autism spectrum disorders severity, and facilitate the development of new treatments and rehabilitation procedures.

About the Authors

O. S. Glotov
Pediatric Research and Clinical Center for Infectious Diseases; Ott Research Institute of Obstetrics, Gynecology and Reproductology; Pushkin State Russian Language Institute
Russian Federation

Saint Petersburg

Moscow



A. N. Chernov
Ott Research Institute of Obstetrics, Gynecology and Reproductology; Institute of Experimental Medicine
Russian Federation

Saint Petersburg



P. A. Suchko
St. Petersburg State Technological Institute (Technical University)
Russian Federation

Saint Petersburg



Yu. A. Eismont
Pediatric Research and Clinical Center for Infectious Diseases
Russian Federation

Saint Petersburg



L. A. Mayorova
Pushkin State Russian Language Institute; Institute of Higher Nervous Activity and Neurophysiology
Russian Federation

Moscow



References

1. Jasoliya M., Gu J., AlOlaby R.R., Durbin-Johnson B., Chedin F., Tassone F. Profiling Genome-Wide DNA Methylation in Children with Autism Spectrum Disorder and in Children with Fragile X Syndrome. Genes (Basel) 2022; 13(10): 1795. DOI: 10.3390/genes13101795

2. Autism spectrum disorders. World Health Organization. Link is active on 03. 10. 2023. http://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders / The link is active on 4. 12. 2023.

3. Maenner M.J., Shaw K.A., Baio J. Prevalence of autism spectrum disorder among children aged 8 years–autism and developmental disabilities monitoring network, 11 sites, united states, 2016. MMWR Surveill Summ 2020; 69: 1. DOI: 10.15585/mmwr.ss6802a1

4. Stoccoro A., Conti E., Scaffei E., Calderoni S., Coppedè F., Migliore L., Battini R. DNA Methylation Biomarkers for Young Children with Idiopathic Autism Spectrum Disorder: A Systematic Review. Int J Mol Sci 2023; 24(11): 9138. DOI: 10.3390/ijms24119138

5. Gibney E.R., Nolan C.M. Epigenetics and gene expression. Heredity 2010; 105: 4–13. DOI: 10.1038/hdy.2010.54

6. Urich M.A., Nery J.R., Lister R., Schmitz R.J., Ecker J.R. MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nature protocols 2015; 10(3): 475–483. DOI: 10.1038/nprot.2014.114

7. Yong W.-S., Hsu F.-M., Chen P.-Y. Profiling genome-wide DNA methylation. Epigen Chromatin 2016; 9(1): 26. DOI: 10.1186/s13072–016–0075–3

8. Herman J.G., Graff J.R., Myöhänen S., Nelkin B.D., Baylin S.B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proceed National Academy Scie USA 1996; 93(18): 9821–9826. DOI: 10.1073/pnas.93.18.9821

9. Bonora G., Rubbi L., Morselli M., Ma F., Chronis C., Plath K., Pellegrini M. DNA methylation estimation using methylation-sensitive restriction enzyme bisulfite sequencing (MREBS). PLoS One 2019; 14(4): 14(4): e0214368. DOI: 10.1371/journal.pone.0214368

10. Yokoyama S., Kitamoto S., Yamada N., Houjou I., Sugai T., Nakamura S-I. et al. The application of methylation specific electrophoresis (MSE) to DNA methylation analysis of the 5′CpG island of mucin in cancer cells. BMC cancer 2012; 12(1): 67. DOI: 10.1186/1471–2407–12–67

11. Nazmul I.M., Yadav S., Hakimul Haque M., Munaz A., Islam F., Al Hossain M.S. et al. Optical biosensing strategies for DNA methylation analysis. Biosens Bioelectron 2017; 92: 668–678. DOI: 10.1016/j.bios.2016.10.034

12. Hernández H.G., Tse M.Y., Pang S.C., Arboleda H., Forero D.A. Optimizing methodologies for PCR-based DNA methylation analysis. BioTechniques 2013; 55(4): 181–197. DOI: 10.2144/000114087

13. Sepulveda A.R., Jones D., Ogino S., Samowitz W., Gulley M.L., Edwards R. et al. CpG Methylation Analysis–Current Status of Clinical Assays and Potential Applications in Molecular Diagnostics. J Mol Diagn 2009; 11(4): 266–278. DOI: 10.2353/jmoldx.2009.080125

14. Qin X., Xu J., Zhong Y. Multidisciplinary Management of Liver Metastases in Colorectal Cancer. Clin Translat Oncol 2020; 22(5): 647–662

15. Erny G.L., Acunha T., Simó C., Cifuentes A., Alves A. Background correction in separation techniques hyphenated to high-resolution mass spectrometry — thorough correction with mass spectrometry scans recorded as profile spectra. J Chromatography A 2017; 1492: 98–105. DOI: 10.1016/j.chroma.2017.02.052

16. Yasuda Y., Matsumoto J., Miura K., Hasegawa N., Hashimoto R. Genetics of autism spectrum disorders and future direction. J Hum Genet 2023; 68: 193–197. DOI: 10.1038/s10038–022–01076–3

17. Min J.L., Hemani G., Hannon E., Dekkers K.F., Castillo-Fernandez J., Luijk R. et al. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nat Genet 2021; 53(9): 1311–1321. DOI: 10.1038/s41588–021–00923-x

18. Duffney L.J., Valdez P., Tremblay M.W., Cao X., Montgomery S., McConkie-Rosell A., Jiang Y.-H. Epigenetics and Autism Spectrum Disorder: A Report of an Autism Case with Mutation in H1 Linker Histone HIST1H1E and Literature Review. Am J Med Genet B Neuropsychiatr Genet 2018; 177: 426–433. DOI: 10.1002/ajmg.b.32631

19. Williams L.A., LaSalle J.M. Future Prospects for Epigenetics in Autism Spectrum Disorder. Mol Diagn Ther 2022; 26: 569–579. DOI: 10.1007/s40291–022–00608-z

20. Jin Y., Allen E.G., Jin P. Cell-free DNA methylation as a potential biomarker in brain disorders. Epigenomics 2022; 14: 369–374. DOI: 10.2217/epi-2021–0416

21. Alshamrani A.A., Alshehri S., Alqarni S.S., Ahmad S.F., Alghibiwi H., Al-Harbi N.O. et al. DNA Hypomethylation Is Associated with Increased Inflammation in Peripheral Blood Neutrophils of Children with Autism Spectrum Disorder: Understanding the Role of Ubiquitous Pollutant Di(2-ethylhexyl) Phthalate. Metabolites 2023; 13: 458. DOI: 10.3390/metabo13030458

22. Kurdyukov S., Bullock M. DNA Methylation Analysis: Choosing the Right Method. Biology. 2016; 5: 3. DOI: 10.3390/biology5010003

23. Araujo D.J., Anderson A.G., Berto S., Runnels W., Harper M., Ammanuel S. et al. FoxP1 orchestration of ASD-relevant signaling pathways in the striatum. Genes Dev 2015; 29(20): 2081–2096. DOI: 10.1101/gad.267989.115

24. Jensen D., Chen J., Turner J. A., Stephen J. M., Wang Y. P., Wilson T. W. et al. Epigenetic associations with adolescent grey matter maturation and cognitive development. Front Genet 2023; 14: 1222619. DOI: 10.3389/fgene.2023.1222619

25. Chau C.M., Ranger M., Sulistyoningrum D., Devlin A.M., Oberlander T.F., Grunau R.E. Neonatal pain and COMT Val158Met genotype in relation to serotonin transporter (SLC6A4) promoter methylation in very preterm children at school age. Front Behav Neuroscie 2014; 8: 409. DOI: 10.3389/fnbeh.2014.00409

26. Appleton A.A., Lester B.M., Armstrong D.A., Lesseur C., Marsit C.J. Examining the joint contribution of placental NR3C1 and HSD11B2 methylation for infant neurobehavior. Psychoneuroendocrinology 2015; 52: 32–42. DOI: 10.1016/j.psyneuen.2014.11.004

27. Andari E., Nishitani S., Kaundinya G., Caceres G.A., Morrier M.J., Ousley O. et al. Epigenetic modification of the oxytocin receptor gene: Implications for autism symptom severity and brain functional connectivity. Neuropsychopharmacology 2020; 45: 1150–1158. DOI: 10.1038/s41386–020–0610–6

28. Song X., Zhou X., Yang F., Liang H., Wang Z., Li R. et al. Association between prenatal bisphenol a exposure and promoter hypermethylation of CAPS2, TNFRSF25, and HKR1 genes in cord blood. Environ Res 2020; 190: 109996. DOI: 10.1016/j.envres.2020.109996

29. Kundakovic M., Gudsnuk K., Herbstman J. B., Tang D., Perera F.P., Champagne F.A. DNA methylation of BDNF as a biomarker of early-life adversity. Proc Natl Acad Sci USA 2015; 112(22): 6807–6813. DOI: 10.1073/pnas.1408355111

30. García-Ortiz M.V., de la Torre-Aguilar M.J., Morales-Ruiz T., Gómez-Fernández A., Flores-Rojas K., Gil-Campos M. et al. Analysis of Global and Local DNA Methylation Patterns in Blood Samples of Patients with Autism Spectrum Disorder. Front Pediatr 2021; 9: 685310. DOI: 10.3389/fped.2021.685310

31. Schneider E., Hajj N.E., Richter S., Roche-Santiago J., Nanda I., Schempp W. et al. Widespread differences in cortex DNA methylation of the “language gene” CNTNAP2 between humans and chimpanzees. Epigenetics 2014; 9(4): 533–545. DOI: 10.4161/epi.27689

32. Gallo R., Stoccoro A., Cagiano R., Nicolì V., Ricciardi R., Tancredi R. et al. Correlation among maternal risk factors; gene methylation and disease severity in females with autism spectrum disorder. Epigenomics 2022; 14(4): 175–185. DOI: 10.2217/epi-2021–0494

33. Verheij C., Bakker C.E., de Graaff E., Keulemans J., Willemsen R., Verkerk A.J.M. et al. Characterization and Localization of the FMR-1 Gene Product Associated with Fragile X Syndrome. Nature 1993; 363: 722–724. DOI: 10.1038/363722a0

34. Yang X., Li L., Chai X., Liu J. The association between ST-8SIA2 gene and behavioral phenotypes in children with autism spectrum disorder. Front Behav Neurosci 2022; 16: 929878. DOI: 10.3389/fnbeh.2022.929878

35. Zhao Y., Zhou C., Yu H., Zhang W., Cheng F., Yu H. et al. Association between the methylation of six apoptosis-associated genes with autism spectrum disorder. Mol Med Rep 2018; 18: 4629–4634. DOI: 10.3892/mmr.2018.9473

36. Jensen Peña C., Monk C., Champagne F.A. Epigenetic effects of prenatal stress on 11β-hydroxysteroid dehydrogenase-2 in the placenta and fetal brain. PloS One 2012; 7(6): e39791. DOI: 10.1371/journal.pone.0039791

37. Bahado-Singh R.O., Vishweswaraiah S., Aydas B., Mishra N.K., Yilmaz A., Guda C., Radhakrishna U. Artificial intelligence analysis of newborn leucocyte epigenomic markers for the prediction of autism. Brain Res 2019; 1724: 146457. DOI: 10.1016/j.brainres.2019.146457

38. Aspra Q., Cabrera-Mendoza B., Morales-Marín M.E., Márquez C., Chicalote C., Ballesteros A. et al. Epigenome-Wide Analysis Reveals DNA Methylation Alteration in ZFP57 and Its Target RASGFR2 in a Mexican Population Cohort with Autism. Children 2022; 9: 462. DOI: 10.3390/children9040462

39. Song Y.S., Lee Y.-S., Narasimhan P., Chan P.H. Reduced Oxidative Stress Promotes NF-κB-Mediated Neuroprotective Gene Expression after Transient Focal Cerebral Ischemia: Lymphocytotrophic Cytokines and Antiapoptotic Factors. J Cereb Blood Flow Metab 2007; 27: 764–775. DOI: 10.1038/sj.jcbfm.9600379

40. Bakulski K.M., Dou J.F., Feinberg J.I., Aung M.T., Ladd-Acosta C., Volk H.E. et al. Autism-Associated DNA Methylation at Birth From Multiple Tissues Is Enriched for Autism Genes in the Early Autism Risk Longitudinal Investigation. Front Mol Neurosci 2021; 14: 775390. DOI: 10.3389/fnmol.2021.775390

41. Nagarajan R.P., Hogart A. R., Gwye Y., Martin M.R., LaSalle J.M. Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics 2006; 1(4): e1–11. DOI: 10.4161/epi.1.4.3514

42. Jiang Y.-H., Sahoo T., Michaelis R.C., Bercovich D., Bressler J., Kashork C.D. et al. A mixed epigenetic/genetic model for oligogenic inheritance of autism with a limited role for UBE3A. Am J Med Genet A 2004; 131(1): 1–10. DOI: 10.1002/ajmg.a.30297

43. Stoccoro A., Gallo R., Calderoni S., Cagiano R., Muratori F., Migliore L. et al. Artificial neural networks reveal sex differences in gene methylation; and connections between maternal risk factors and symptom severity in autism spectrum disorder. Epigenomics 2022; 14: 1181–1195. DOI: 10.2217/epi-2022–0179

44. Wheeler A.C., Mussey J., Villagomez A., Bishop E., Raspa M., Edwards A. et al. DSM-5 Changes and the Prevalence of Parent-Reported Autism Spectrum Symptoms in Fragile X Syndrome. J Autism Dev Disord 2015; 45: 816–829. DOI: 10.1007/s10803–014–2246-z

45. Nardone S., Sams D.S., Zito A., Reuveni E., Elliott E. Dysregulation of Cortical Neuron DNA Methylation Profile in Autism Spectrum Disorder. Cereb Cortex 2017; 27(12): 5739–5754. DOI: 10.1093/cercor/bhx250

46. Baudouin S.J., Gaudias J., Gerharz S., Hatstatt L., Zhou K., Punnakkal P. et al. Shared synaptic pathophysiology in syndromic and nonsyndromic rodent models of autism. Science 2012; 338(6103): 128–132. DOI: 10.1126/science.1224159

47. Provenzi L., Fumagalli M., Sirgiovanni I., Giorda, R., Pozzoli U., Morandi F. et al. Pain-related stress during the Neonatal Intensive Care Unit stay and SLC6A4 methylation in very preterm infants. Front Behav Neuroscie 2015; 9: 99. DOI: 10.3389/fnbeh.2015.00099

48. Devlin A.M., Brain U., Austin J., Oberlander T.F. Prenatal exposure to maternal depressed mood and the MTHFR C677T variant affect SLC6A4 methylation in infants at birth. PloS One 2010; 5(8): e12201. DOI: 10.1371/journal.pone.0012201

49. Folger A.T., Ding L., Ji H., Yolton K., Ammerman R.T., Van Ginkel J.B., Bowers K. Neonatal NR3C1 Methylation and Social-Emotional Development at 6 and 18 Months of Age. Front Behav Neuroscie 2019; 13: 14. DOI: 10.3389/fnbeh.2019.00014

50. Lester B.M., Marsit C.J., Giarraputo J., Hawes K., LaGasse L.L., Padbury J.F. Neurobehavior related to epigenetic differences in preterm infants. Epigenomics 2015; 7(7): 1123–36. DOI: 10.2217/epi.15.63

51. Rijlaarsdam J., van IJzendoorn M.H., Verhulst F.C., Jaddoe V.W.V., Felix J.F., Tiemeier H., Bakermans-Kranenburg M.J. Prenatal stress exposure, oxytocin receptor gene (OXTR) methylation, and child autistic traits: The moderating role of OXTR rs53576 genotype. Autism Res 2017; 10: 430–438. DOI: 10.1002/aur.1681

52. Grove T. B., Burghardt K. J., Kraal A. Z., Doughert R. J., Taylor S. F., Ellingrod V.L. Oxytocin Receptor (OXTR) Methylation and Cognition in Psychotic Disorders. Molr Neuropsychiatry. 2016; 2(3): 151–160. DOI: 10.1159/000448173

53. Provenzano G., Pangrazzi L., Poli A., Corsi M. Role of brain-derived neurotrophic factor (BDNF) in autism spectrum disorders. J Clin Med 2019; 8(5): 627. DOI: 10.3390/jcm8050627

54. Connor S.A., Wang Y.T. A Place at the Table: LTD as a mediator of memory genesis. Neuroscientist 2016; 22(4): 359–371. DOI: 10.1177/1073858415588498

55. Nguyen A., Rauch T.A., Pfeifer G.P., Hu V.W. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB J 2010; 24(8): 3036–3051. DOI: 10.1096/fj.10–154484

56. Gallo R., Stoccoro A., Cagiano R., Nicolì V., Ricciardi R., Tancredi R. et al. Correlation among maternal risk factors; gene methylation and disease severity in females with autism spectrum disorder. Epigenomics 2022; 14(4): 175–185. DOI: 10.2217/epi-2021–0494

57. Lopez S.J., Dunaway K., Islam M.S., Mordaunt C., Ciernia A.V., Meguro-Horik M. et al. UBE3A-mediated regulation of imprinted genes and epigenome-wide marks in human neurons. Epigenetics 2017; 12(11): 982–990. DOI: 10.1080/15592294.2017.1376151

58. Bulekbaeva Sh.A., Baydarbekova A.K., Tleulinova R.R., Abdrakhmanova U.Sh., Altynbekova A.Zh. Rehabilitation of children with autism spectrum disorders: a comprehensive assessment of problems and trigger factors for the work of a multidisciplinary team. Kazakh J Phys Med & Rehab 2019; 2(27): 4–14. (in Russ.)

59. Shahmoradi L., Rezayi S. Cognitive rehabilitation in people with autism spectrum disorder : a systematic review of emerging virtual reality-based approaches. J NeuroEngineering Rehabil 2022; 19: 91. DOI: 10.1186/s12984–022–01069–5

60. Kalra R., Gupta M., Sharma P. Recent advancement in interventions for autism spectrum disorder : A review. J Neurorestoratol 2023; 11(3): 100068. DOI: 10.1016/j.jnrt.2023.100068


Review

For citations:


Glotov O.S., Chernov A.N., Suchko P.A., Eismont Yu.A., Mayorova L.A. Formation of cognitive processes in children with autism. Part I. Epigenetic mechanisms. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2024;69(1):34-44. (In Russ.) https://doi.org/10.21508/1027-4065-2024-69-1-34-44

Views: 700


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)