Preview

Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Sarcopenia in children

https://doi.org/10.21508/1027-4065-2024-69-6-21-26

Abstract

Sarcopenia is characterized by a decline in skeletal muscle mass and muscle function. Skeletal muscle plays a crucial role in metabolism and overall health throughout the lifespan. Emerging evidence indicates that both prenatal (such as maternal diet during pregnancy and genetic factors) and postnatal factors (including physical activity, hormonal levels, nutrition, and various diseases, such as obesity) influence the development of muscle mass and strength early in life. The presence of sarcopenia is associated with adverse outcomes (such as cardiometabolic disorders, non-alcoholic fatty liver disease, cognitive dysfunction, falls and fractures, reduced physical performance and quality of life, as well as disability and mortality) in both children and later in adults. Despite growing research interest in sarcopenia across different ages, a clear pediatric concept and clinical guidelines are currently lacking. The objective of this review is to examine the latest data on sarcopenia in pediatrics, with a specific focus on myokines and their role. The review includes data from the past 5 years sourced from the Elibrary and PubMed databases. The literature search was conducted using keywords: pediatric sarcopenia, sarcopenia in children, skeletal muscle in childhood, myokines in children.

About the Authors

M. V. Matveeva
Siberian State Medical University
Russian Federation

Tomsk



Yu. G. Samoilova
Siberian State Medical University
Russian Federation

Tomsk



References

1. Bauer J., Morley J.E., Schols A.M.W.J., Ferrucci L., Cruz-Jentoft A.J., Dent E. et al. Sarcopenia: A Time for Action. An SCWD Position Paper. J Cachexia Sarcopenia Muscle 2019; 10(5): 956–961. DOI: 10.1002/jcsm.12483

2. Cruz-Jentoft A.J., Bahat G., Bauer J., Boirie Y., Bruyère O., Cederholm T. et al; Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019; 48(1): 16–31. DOI: 10.1093/ageing/afy169

3. Samoilova Y.G., Matveeva M.V., Khoroshunova E.A., Kudlay D.A., Oleynik O.A., Spirina L.V. Markers for the Prediction of Probably Sarcopenia in Middle-Aged Individuals. J Pers Med 2022; 12(11): 1830. DOI: 10.3390/jpm12111830

4. Ooi P.H., Thompson-Hodgetts S., Pritchard-Wiart L., Gilmour S.M., Mager D.R. Pediatric Sarcopenia: A Paradigm in the Overall Definition of Malnutrition in Children? JPEN J Parenter Enteral Nutr 2020; 44(3): 407–418. DOI: 10.1002/jpen.1681

5. Orsso C.E., Tibaes J.R.B., Oliveira C.L.P., Rubin D.A., Field C.J., Heymsfield S.B. et al. Low muscle mass and strength in pediatrics patients: Why should we care? Clin Nutr 2019; 38(5): 2002–2015. DOI: 10.1016/j.clnu.2019.04.012

6. Zembura M., Matusik P. Sarcopenic Obesity in Children and Adolescents: A Systematic Review. Front Endocrinol (Lausanne) 2022; 13: 914740. DOI: 10.3389/fendo.2022.914740

7. Mager D.R. Hager A., Gilmour S. Challenges and physiological implications of sarcopenia in children and youth in health and disease. Curr Opin Clin Nutr Metab Care 2023; 26(6): 528–533. DOI: 10.1097/MCO.0000000000000969

8. Zav’jalova A.N., Havkin A.I., Novikova V.P. Causes and prevention options for sarcopenia in children. Rossiyskiy vestnik perinatologii i pediatrii 2022; 67:(2): 34–42. (in Russ.) DOI: 10,21508/1027–4065–2022–67–2–34–42

9. Rezende I.F., Conceição-Machado M.E., Souza V.S., Santos E.M., Silva L.R. Sarcopenia in children and adolescents with chronic liver disease. J Pediatr (Rio J) 2020; 96: 439–446. DOI: 10.1016/j.jped.2019.02.005

10. Aljilani B., Tsintzas K., Jacques M., Radford S., Moran G.W. Systematic review: Sarcopenia in paediatric inflammatory bowel disease. Clin Nutr ESPEN 2023; 57: 647–654. DOI: 10.1016/j.clnesp.2023.08.009

11. Paris M.T., Bell K.E., Mourtzakis M. Myokines and adipokines in sarcopenia: understanding cross-talk between skeletal muscle and adipose tissue and the role of exercise. Curr Opin Pharmacol 2020; 52: 61–66. DOI: 10.1016/j.coph.2020.06.003

12. Ritz A., Lurz E., Berger M. Sarcopenia in Children with Solid Organ Tumors: An Instrumental Era. Cells 2022; 11(8): 1278. DOI: 10.3390/cells11081278

13. Jung H.N., Jung C.H., Hwang Y.C. Sarcopenia in youth. Metabolism 2023; 144: 155557. DOI: 10.1016/j.metabol.2023.155557

14. Cederholm T., Barazzoni R., Austin P., Ballmer P., Biolo G., Bischoff S.C. et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin Nutr 2017; 36(1): 49–64. DOI: 10.1016/j.clnu.2016.09.004

15. de Figueiredo R.S., Nogueira R.J.N., Springer A.M.M., Melro E.C., Campos N.B., Batalha R.E. et al. Sarcopenia in critically ill children: A bedside assessment using point-of-care ultrasound and anthropometry. Clin Nutr 2021; 40(8): 4871–4877. DOI: 10.1016/j.clnu.2021.07.014

16. Giakoumaki I., Pollock N., Aljuaid T., Sannicandro A.J., Alameddine M., Owen E. et al. Postnatal Protein Intake as a Determinant of Skeletal Muscle Structure and Function in Mice-A Pilot Study. Int J Mol Sci 2022; 23(15): 8815. DOI: 10.3390/ijms23158815

17. Sadowsky C.L. Targeting Sarcopenia as an Objective Clinical Outcome in the Care of Children with Spinal Cord-Related Paralysis: A Clinician’s View. Children (Basel) 2023; 10(5): 837. DOI: 10.3390/children10050837

18. Sha T., Wang Y., Zhang Y., Lane N.E., Li C., Wei J. et al. Genetic Variants, Serum 25-Hydroxyvitamin D Levels, and Sarcopenia: A Mendelian Randomization Analysis. JAMA Netw Open 2023; 6(8): e2331558. DOI: 10.1001/jamanetworkopen.2023.31558

19. Ooi P.H., Mazurak V.C., Siminoski K., Bhargava R., Yap J.Y.K., Gilmour S.M. et al. Deficits in Muscle Strength and Physical Performance Influence Physical Activity in Sarcopenic Children After Liver Transplantation. Liver Transpl 2020; 26(4): 537–548. DOI: 10.1002/lt.25720

20. Gilligan L.A., Towbin A.J., Dillman J.R., Somasundaram E., Trout A.T. Quantification of skeletal muscle mass: sarcopenia as a marker of overall health in children and adults. Pediatr Radiol 2020; 50(4): 455–464. DOI: 10.1007/s00247–019–04562–7

21. Ooi P.H., Hager A., Mazurak V.C., Dajani K., Bhargava R., Gilmour S.M., Mager D.R. Sarcopenia in Chronic Liver Disease: Impact on Outcomes. Liver Transpl 2019; 25(9): 1422–1438. DOI: 10.1002/lt.25591

22. Buckinx F., Landi F., Cesari M., Fielding R.A., Visser M., Engelke K. et al. Pitfalls in the measurement of muscle mass: a need for a reference standard. J Cachexia Sarcopenia Muscle 2018; 9(2): 269–278. DOI: 10.1002/jcsm.12268

23. Schmidt S.C., Bosy-Westphal A., Niessner C., Woll A. Representative Body Composition Percentiles From Bioelectrical Impedance Analyses Among Children and Adolescents. MoMo Study Clin Nutr 2019; 38(6): 2712–2720. DOI: 10.1016/j.clnu.2018.11.026

24. Webber C.E., Barr R.D. Age- and Gender-Dependent Values of Skeletal Muscle Mass in Healthy Children and Adolescents. J Cachexia Sarcopenia Muscle 2012; 3: 25–29. DOI: 10.1007/s13539–011–0042–6

25. Griffiths A., Toovey R., Morgan P.E., Spittle A.J. Psychometric Properties of Gross Motor Assessment Tools for Children: A Systematic Review. BMJ Open 2018; 8(10): e021734. DOI: 10.1136/bmjopen-2018–021734

26. Buckinx F., Reginster J.Y., Dardenne N., Croisiser J.L., Kaux J.F. et al. Concordance between muscle mass assessed by bioelectrical impedance analysis and by dual energy X-ray absorptiometry: a cross-sectional study. BMC Musculoskelet Disord 2015; 16: 60. DOI: 10.1186/s12891–015–0510–9


Review

For citations:


Matveeva M.V., Samoilova Yu.G. Sarcopenia in children. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2024;69(6):21-26. (In Russ.) https://doi.org/10.21508/1027-4065-2024-69-6-21-26

Views: 317


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)