

Modern concept of using imaging methods in radionuclide kidney studies in children
https://doi.org/10.21508/1027-4065-2025-70-2(p.2)-17-20
Abstract
Renal scintigraphy remains the most informative method for imaging and assessing kidney function in children to this day. This method allows for the detection of scarring foci in the renal parenchyma and enables the prediction of the progression of chronic kidney disease. The ability of artificial intelligence to transform routine medical imaging into a fully automated diagnostic tool is currently being widely explored. In addition to qualitative analysis performed on renal medical imaging, texture analysis has been integrated with machine learning methods as a quantitative assessment of renal tissue heterogeneity, providing a promising additional tool in predicting renal function decline.
About the Authors
F. O. TurovRussian Federation
Moscow
S. P. Yatsyk
Russian Federation
Moscow
Z. Yu. Kuznetsova
Russian Federation
Moscow
A. I. Krapivkin
Russian Federation
Moscow
E. N. Vrublevskaya
Russian Federation
Moscow
References
1. Biassoni L., Walker M., Redman S., Graham R. Clinical guideline for static renal cortical scintigraphy in paediatrics. Nucl Med Commun 2024; 45(12): 993–997. DOI: 10.1097/MNM.0000000000001905
2. Hardina S., Nugrahadi T., Budiawan H., Kartamihardja A.H.S. Renal Cortical Imaging with Tc-99m DMSA in Children: An Institutional Review. World J Nucl Med 2024; 23(3): 180–184. DOI: 10.1055/s-0044–1787717
3. Watshon N. Chapman & Nakielny a guide to radiological procedures. Elsevier Health Sciences, 2023; p.440.
4. Dondi M., Giubbini R. Medicina nucleare nella pratica clinica. 2003; p. 642.
5. Blaufox M.D. Procedures of choice in renal nuclear medicine. J Nucl Med 1991; 32(6): 1301–1309.
6. Eshima D., Taylor A. Technetium-99m (99mTc) mercaptoace-tyltriglycine: update on the new 99mTc renal tubular function agent. Semin Nucl Med 1992; 22(2): 61–73. DOI: 10.1016/s0001–2998(05)80082–0
7. Lim R., Kwatra N., Ferrer Valencia V., Collins K.N., Vali R., Fahey F.H., Treves S. Review of the Clinical and Technical Aspects of 99mTc-Dimercaptosuccinic Acid Renal Imaging: The Comeback “Kit”. J Nucl Med Technol 2024; 52(3): 199–204. DOI: 10.2967/jnmt.123.267185
8. Turov F.O., Vrublevsky S.G., Krapivkin A.I. Urinary tract infections. The danger of continuous antibiotic prophylaxis in childhood. Byulleten’ Orenburgskogo nauchnogo centra UrO RAN. 2023; 3: 6 DOI: 10.24411/2304–9081–2023–13004
9. Bazic-Dorovic B., Radulovic M., Šišić M, Jauković L., Dugonjić S., Pucar D., et al. Technetium-99m-dimercaptosuccinic acid renal scintigraphy can guide clinical management in congenital hydronephrosis. Hell J Nucl Med 2017; 20 (Suppl): 114–122.
10. Hedayati R., Hekmat S., Rastgou F., Yaghoobi N., Firoozabadi H., Bitarafan-Rajabi A., et al. Role of Technetium-99m-Ethylenedicysteine in the Calculation of Differential Renal Function: A Comparison Study with Dimercaptosuccinic Acid Renal Scintigraphy. Indian J Nucl Med 2021; 36(1): 21–24. DOI: 10.4103/ijnm.IJNM_94_20
11. Burkin A., Yatsyk S., Fomin D. Radionuclide assessment of ureteral transport function in pathology of the vesicoureteral segment in children and adolescents. Pediatrics. Zhurnal «Pediatriya» imeni G.N. Speranskogo 2015; 94(3): 57–61.
12. Turov F. Do children with vesicoureteral reflux need antibiotic prophylaxis? A modern look at a big problem. Pediatrics. Zhurnal «Pediatriya» imeni G.N. Speranskogo 2020; 99(5): 265–271. DOI 10.24110/0031–403X-2020–99–5–265–271
13. Chao K.S., Leung W.M., Grigsby P.W., Mutch D.G., Herzog T., Perez C.A. The clinical implications of hydronephrosis and the level of ureteral obstruction in stage IIIB cervical cancer. Int J Radiat Oncol Biol Phys 1998; 40(5): 1095–1100. DOI: 10.1016/s0360–3016(97)00899–7
14. Alnazer I., Bourdon P., Urruty T., Falou O., Khalil M., Shahin A., Fernandez-Maloigne C. Recent advances in medical image processing for the evaluation of chronic kidney disease. Med Image Anal. 2021;69:101960. DOI: 10.1016/j.media.2021.101960.
15. Dillman J., Somasundaram E., Brady S., He L. Current and emerging artificial intelligence applications for pediatric abdominal imaging. Pediatr Radiol 2022; 52(11): 2139–2148. DOI: 10.1007/s00247–021–05057–0
16. Moawad A., Fuentes D., ElBanan M., Shalaby A., Guccione J., Kamel S., et al. Artificial Intelligence in Diagnostic Radiology: Where Do We Stand, Challenges, and Opportunities. J Comput Assist Tomogr 2022; 46(1): 78–90. DOI: 10.1097/RCT.0000000000001247
17. Stumpo V., Kernbach J., van Niftrik C., Sebök M., Fierstra J., Regli L., et al. Machine Learning Algorithms in Neuroimaging: An Overview. Acta Neurochir Suppl 2022; 134: 125–138. DOI: 10.1007/978–3–030–85292–4_17
18. Mazurowski M.A., Buda M., Saha A., Bashir M.R. Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI. J Magn Reson Imaging 2019; 49(4): 939–954. DOI: 10.1002/jmri.26534.
Review
For citations:
Turov F.O., Yatsyk S.P., Kuznetsova Z.Yu., Krapivkin A.I., Vrublevskaya E.N. Modern concept of using imaging methods in radionuclide kidney studies in children. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2025;70(2/2):17-20. (In Russ.) https://doi.org/10.21508/1027-4065-2025-70-2(p.2)-17-20