Preview

Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Iron deficiency anemia in children-athletes

https://doi.org/10.21508/1027-4065-2025-70-3-87-94

Abstract

The literature review focuses on iron deficiency anemia in young athletes is devoted. The main pathogenetic mechanisms of anemia’s development in athletes and differences in the main causes of its formation in athletes and in the population are demonstrated. The regulation mechanism of iron metabolism in the body, the effect of intensive physical load on this process are covered in detail, the effect of endogenous and exogenous iron on the level of physical performance is described. It describes the relationship between the nature of nutrition of athletes, sports specialization and the nature of training loads with the likelihood of developing anemia. A clinical example with the development of iron deficiency anemia in a teenager engaged in sports against the background of concomitant pathology is given. The importance of iron level control and prevention of iron deficiency anemia in young people engaged in professional sports is presented.

About the Authors

L. A. Balykova
Ogarev National Research Mordovia State University
Russian Federation

430005, Saransk



S. A. Ivyanskiy
Ogarev National Research Mordovia State University
Russian Federation

430005, Saransk



V. S. Vereshchagina
Ogarev National Research Mordovia State University
Russian Federation

430005, Saransk



D.A. T. Mendes
Ogarev National Research Mordovia State University
Russian Federation

430005, Saransk



A. V. Krasnopolskaya
Ogarev National Research Mordovia State University
Russian Federation

430005, Saransk



T. M. Duvayarova
Ogarev National Research Mordovia State University
Russian Federation

430005, Saransk



O. M. Soldatov
Children’s Republican Clinical Hospital
Russian Federation

430032, Saransk



M. G. Galkina
Children’s Republican Clinical Hospital
Russian Federation

430032, Saransk



References

1. Theory and methodology of modern sports research: monograph. Guba V.P., Marinich V.V. — M.: Sport, 2016; 232 (in Russ.)

2. Durmanov N.D., Filimonov A.S. Diagnosis and correction of iron metabolism disorders in high-performance sports: Methodological recommendations for club doctors. Moscow, 2010. (in Russ.)

3. Durmanov N.D., Filimonov A.S. Diagnosis and correction of iron metabolism disorders in high-performance sports: Methodological recommendations for club doctors. Moscow, 2010. (in Russ.)

4. UNICEF. Non-communicable diseases. April 2021. In: UNISEF for every child. Available online: https://data.unicef.topic/childhealth/noncommunicable-diseases. / Ссылка активна на 30 марта 2022

5. Capanema F.D., Lamounier J.A., Ribeiro J.G.L., Lima C.O.V., Paiva A.R.A., Quadros P.R., et. al. Anemia and nutritional aspects in adolescent athletes: a cross-sectional study in a reference sport organization. Rev Paul Pediatr. 2021; 40: e2020350. DOI: 10.1590/1984-0462/2022/40/2020350

6. Solberg A., Reikvam H. Iron Status and Physical Performance in Athletes. Life (Basel). 2023; 13 (10): 2007. DOI: 10.3390/life13102007

7. Kardasis W., Naquin E.R., Garg R., Arun T., Gopianand J.S., Karmakar E., Gnana-Prakasam J.P. The IRONy in Athletic Performance. Nutrients. 2023; 15 (23): 4945. DOI: 10.3390/nu15234945

8. Pasricha S.-R., Tye-Din J., Muckenthaler M.U., Swinkels D.W. Iron deficiency. Lancet. 2021; 397: 233–248. DOI: 10.1016/S0140-6736(20)32594-0

9. McCormick R., Sim M., Dawson B., Peeling P. Refining Treatment Strategies for Iron Defi0cient Athletes. Sports Med. 2020; 50 (12): 2111–2123. DOI: 10.1007/s40279-020-01360-2

10. Ganz T. Molecular Control of Iron Transport. JASN. 2007; 18: 394–400. DOI: 10.1681/ASN.2006070802

11. Clénin G.E., Cordes M., Huber A., Schumacher Y., Noack P., Scales J., Kriemler S. Iron Deficiency in Sports—Definition, Influence on Performance and Therapy. Swiss Med. Wkly. 2016; 64: 6–181. DOI: 10.4414/smw.2015.14196

12. Latunde-Dada G.O. Iron metabolism in athletes-achieving a gold standard. Eur J Haematol. 2013; 90 (1): 10–15. DOI: 10.1111/ejh.12026

13. Collins J.F., Wessling-Resnick M., Knutson M.D. Hepcidin Regulation of Iron Transport. Proc. J. Nutr. 2005; 138: 2284– 2288. DOI: 10.3945/jn.108.096347

14. Domínguez R., Sánchez-Oliver A.J., Mata-Ordoñez F., Feria-Madueño A., Grimaldi-Puyana M., López-Samanes Á., Pérez-López A. Effects of an Acute Exercise Bout on Serum Hepcidin Levels. Nutrients. 2018; 10 (2): 209. DOI: 10.3390/nu10020209

15. Isaev E.P., Okorokov P.L., Zyabkin I.V. Prevalence of iron-deficient states in youth sports of the highest achievements. Medicina jekstremal’nyh situacij. 2024; 2 (26): 83–86 (in Russ.)

16. Botkina A.S. Iron deficiency anemia in adolescents Praktika pediatra 2015; 5–66: 6–7 (in Russ.)]

17. Clénin G., Cordes M., Huber A., Schumacher Y.O., Noack P., Scales J., Kriemler S. Iron deficiency in sports — definition, influence on performance and therapy. Swiss Med Wkly. 2015; 145: w14196. DOI: 10.4414/smw.2015.14196

18. Camaschella C., Nai A. Ineffective erythropoiesis and regulation of iron status in iron loading anaemias. Br J Haematol. 2016; 172 (4): 512–523. DOI: 10.1111/bjh.13820

19. Csulak E., Takács T., Babis B, Horváth L., Márton P., Lakatos B., et. al. Iron deficiency in young basketball players: Is a 100μg/L ferritin cut-off appropriate for iron supplementation?: Results of a randomized placebo-controlled study. Clin Cardiol. 2023; 46 (9): 1116–1123. DOI: 10.1002/clc.24117

20. Nabeyama T., Suzuki Y., Saito H., Yamamoto K., Sakane M., Sasaki Y., et. al. Prevalence of iron-deficient but non-anemic university athletes in Japan: an observational cohort study. J Int Soc Sports Nutr. 2023; 20 (1): 2284948. DOI: 10.1080/15502783.2023.2284948

21. Nicotra D., Arieli R., Redlich N., Navot-Mintzer D., Constantini N.W. Iron Deficiency and Anemia in Male and Female Adolescent Athletes Who Engage in Ball Games. J Clin Med. 2023; 12 (3): 970. DOI: 10.3390/jcm12030970

22. Damian M.T., Vulturar R., Login C.C., Damian L., Chis A., Bojan A. Anemia in Sports: A Narrative Review. Life (Basel). 2021; 11 (9): 987. DOI: 10.3390/life110909873

23. Vianna A.D.S, Câmara V.M., Barbosa M.C.M, Santos A.S.E., Asmus C.I.R.F., Luiz R.R., Jesus I.M. Exposição ao mercúrio e anemia em crianças e adolescentes de seis comunidades da Amazônia Brasileir-a [Mercury exposure and anemia in children and adolescents from six riverside communities of Brazilian Amazon]. Cien Saude Colet. 2022; 27 (5): 1859–1871. Portuguese. DOI: 10.1590/1413-81232022275.08842021

24. Komatsu T., Yamasawa F, Dohi M., Akama T., Masujima A., Kono I., Kawahara T. The prevalence of anemia in Japanese Universiade athletes, detected with longitudinal preparticipation medical examinations. J Gen Fam Med. 2018; 19 (3): 102–108. DOI: 10.1002/jgf2.164 2

25. Sinclair L.M., Hinton P.S. Prevalence of iron deficiency with and without anemia in recreationally active men and women. J Am Diet Assoc. 2005; 105 (6): 975–978. DOI: 10.1016/j.jada.2005.03.0055

26. Auersperger I., Škof B., Leskošek B., Knap B., Jerin A., Lainscak M. Exercise-induced changes in iron .status and hepcidin response in female runners. PLoS One. 2013; 8 (3): e58090. DOI: 10.1371/journal.pone.0058090

27. Sandström G., Börjesson M., Rödjer S. Iron deficiency in adolescent female athletes — is iron status affected by regular sporting activity? Clin J Sport Med. 2012; 22 (6): 495–500. DOI: 10.1097/JSM.0b013e3182639522

28. Shoemaker M.E., Gillen Z.M., McKay B.D., Koehler K., Cramer J.T. High prevalence of poor iron status among 8- to 16-year-old youth athletes: interactions among biomarkers of iron, dietary intakes, and biological maturity. J Am Coll Nutr. 2020; 39 (2): 155–162. DOI: 10.1080/07315724.2019.1621229

29. Capra M.E., Stanyevic B., Giudice A., Monopoli D., Decarolis N.M., Esposito S., Biasucci G. Nutrition for Children and Adolescents Who Practice Sport: A Narrative Review. Nutrients. 2024; 16 (16): 2803. DOI: 10.3390/nu16162803

30. Ахмедов В.А., Гавриленко Д.А. Особенности влияния занятий различными видами спорта на органы желудочно-кишечного тракта. Лечащий врач. 2021; 2 (24): 26–29.

31. Kuwabara A.M., Tenforde A.S., Finnoff J.T., Fredericson M. Iron deficiency in athletes: A narrative review. PM R. 2022; 14 (5): 620–642. DOI: 10.1002/pmrj.12779

32. Sim M., Dawson B., Landers G., Swinkels D.W., Tjalsma H., Trinder D. Effect of exercise modality and intensity on post-exercise interleukin-6 and hepcidin levels. Int. J. Sport Nutr. Exerc. Metab. 2013; 23: 178–186. DOI: 10.1123/ijsnem.23.2.178

33. Dahlquist D.T., Stellingwerff T., Dieter B.P. Effects of macro- and micronutrients on exercise-induced hepcidin response in highly trained endurance athletes. Appl. Physiol. Nutr. Metab. Eff. 2017; 42: 1036–1043. DOI: 10.1139/apnm-2017-0207

34. Newlin M.K., Williams S., McNamaraet T., Tjalsma H., Swinkels D.W., Haymes E.M. The effects of acute exercise bouts on hepcidin in women. Int J Sport Nutr Exerc Metab. 2012; 22: 79–88. DOI:0.1123/ijsnem.22.2.79

35. Oktedalen O., Lunde O.C., Opstad P.K., Aabakken L., Kvernebo K. Changes in the gastrointestinal mucosa after long-distance running // Scand J Gastroenterol. 1992; 27 (4): 270– 474. DOI:10.3109/00365529209000073

36. Cordova A., Monserrat J., Villa G., Reyes E., Soto MA-M. Effects of AM3 (Inmunoferon) on increased serum concentrations of interleukin-6 and tumour necrosis factor receptors I and II in cyclists. J Sports Sci. 2006; 24: 565–573

37. Rojas-Valverde D., Olcina, G., Sánchez-Ureña B., Pino-Ortega J., Martínez-Guardado I., Timón R. Proteinuria and bilirubinuria as potential risk indicators of acute kidney injury during running in outpatient settings. Medicina 2020; 56: 562. DOI:10.3390/medicina56110562

38. Urakami S., Ogawa K., Oka S., Hayashida M., Hagiwara K., Nagamoto S., Okaneya T. Macroscopic hematuria caused by running-induced traumatic bladder mucosal contusions. IJU Case Rep. 2019; 2: 27–29. DOI: 10.1002/iju5.12030

39. Cohen C.T., Powers J.M. Nutritional Strategies for Managing Iron Deficiency in Adolescents: Approaches to a Challenging but Common Problem. Adv Nutr. 2024; 15 (5): 100215. DOI: 10.1016/j.advnut.2024.100215

40. Nebl J., Schuchardt J.P., Ströhle A., Wasserfurth P., Haufe S., Eigendorf J., et. al. Micronutrient Status of Recreational Runners with Vegetarian or Non-Vegetarian Dietary Patterns. Nutrients. 2019; 11 (5): 1146. DOI: 10.3390/nu11051146

41. DeRuisseau K.C., Cheuvront S.N., Haymes E.M., Sharp R.G. Sweat iron and zinc losses during prolonged exercise. Int J Sport Nutr Exerc Metab. 2002; 12 (4): 428–437. DOI: 10.1123/ijsnem.12.4.428

42. Pachikian B., Naslain D., Benoit N., Brebels R., Van Asch K., Compernolle V., et. al. Iron supplementation limits the deleterious effects of repeated blood donation on endurance sport performance but not on iron status. Blood Transfus. 2020; 18 (5): 334–347. DOI: 10.2450/2020.0087-20

43. Pedlar C.R., Brugnara C., Bruinvels G., Burden R. Iron balance and iron supplementation for the female athlete: A practical approach. Eur J Sport Sci. 2018; 18 (2): 295–305. DOI: 10.1080/17461391.2017.1416178

44. Kontoghiorghes G.J. The Puzzle of Aspirin and Iron Deficiency: The Vital Missing Link of the Iron-Chelating Metabolites. Int J Mol Sci. 2024; 25 (10): 5150. DOI: 10.3390/ijms25105150

45. Roy R., Kück M., Radziwolek L., Kerling A. Iron Deficiency in Adolescent and Young Adult German Athletes-A Retrospective Study. Nutrients. 2022; 14 (21): 4511. DOI: 10.3390/nu14214511

46. Schumacher Y.O., Schmid A., Grathwohl D., Bültermann D., Berg A. Hematological indices and iron status in athletes of various sports and performances. Med Sci Sports Exerc. 2002; 34 (5): 869–875. DOI: 10.1097/00005768-200205000-00022

47. Opoku-Okrah C., Sam D.K., Nkum B., Dogbe E.E., Antwi-Boateng L., Sackey B., et. al. Sports anaemia and anthropometric evaluation of footballers at Kwame Nkrumah University of Science and Technology (KNUST). Pan Afr Med J. 2016; 24: 25. DOI: 10.11604/pamj.2016.24.25.7244

48. Kreher J.B., Schwartz J.B. Overtraining syndrome: a practical guide. Sports Health. 2012; 4 (2): 128–138. DOI: 10.1177/1941738111434406

49. McLane J.A., Fell R.D., McKay R.H., Winder W.W., Brown E.B., Holloszy J.O. Physiological and biochemical effects of iron deficiency on rat skeletal muscle. Am J Physiol. 1981; 241 (1):C47–54. DOI: 10.1152/ajpcell.1981.241.1.C47

50. Rineau E., Gueguen N., Procaccio V., Geneviève F., Reynier P., Henrion D., Lasocki S. Iron Deficiency without Anemia Decreases Physical Endurance and Mitochondrial Complex I Activity of Oxidative Skeletal Muscle in the Mouse. Nutrients. 2021; 13 (4): 1056. DOI: 10.3390/nu13041056

51. Ohira Y., Gill S.L. Effects of dietary iron deficiency on muscle fiber characteristics and whole-body distribution of hemoglobin in mice. J Nutr. 1983; 113 (9): 1811–1818. DOI: 10.1093/jn/113.9.1811

52. Milman N.T. A review of nutrients and compounds, which promote or inhibit intestinal iron absorption: making a platform for dietary measures that can reduce iron uptake in patients with genetic haemochromatosis. J Nutr Metab. 2020; 2020: 7373498. DOI: 10.1155/2020/7373498

53. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of a health claim related to vitamin C and increasing non-haem iron absorption pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA Journal 2014; 12 (1): 3514. DOI: 10.2903/j.efsa.2014.3514

54. Sims S.T., Kerksick C.M., Smith-Ryan A.E., Janse de Jonge X.A.K., Hirsch K.R., Arent S.M., et. al. International society of sports nutrition position stand: nutritional concerns of the female athlete. J Int Soc Sports Nutr. 2023; 20 (1): 2204066. DOI: 10.1080/15502783.2023.2204066

55. West S., Monteyne A.J., van der Heijden I., Stephens F.B., Wall B.T. Nutritional Considerations for the Vegan Athlete. Adv Nutr. 2023; 14 (4): 774–795. DOI: 10.1016/j.advnut.2023.04.012

56. Lhee S.H., Jain R., Madathur Sadasivam M., Kim S., Bae M., Yu J., Lee D.Y. Sports injury and illness incidence among South Korean elite athletes in the 2018 Asian Games: a single-physician prospective study of 782 athletes. BMJ Open Sport Exerc Med. 2021; 7 (1): e000689. DOI: 10.1136/bmjsem-2019-000689

57. Choe Y.H., Hwang S., Hong Y.C. Higher seroprevalence of Helicobacter pylori infection in Korean adolescent athletes compared to age- and sex-matched non-athletes. J Gastroenterol Hepatol. 2002; 17 (2): 131–134. DOI: 10.1046/j.1440-1746.2002.02679.x

58. Kato S., Gold B.D., Kato A. Helicobacter pylori-Associated Iron Deficiency Anemia in Childhood and Adolescence-Pathogenesis and Clinical Management Strategy. J Clin Med. 2022; 11 (24): 7351. DOI: 10.3390/jcm11247351

59. Kato S., Gold B.D., Kato A. The Resolution of Severe Iron-Deficiency Anemia After Successful Eradication of Helicobacter pylori in Teenagers. JPGN Rep. 2022; 3 (3): e238. DOI: 10.1097/PG9.0000000000000238.


Review

For citations:


Balykova L.A., Ivyanskiy S.A., Vereshchagina V.S., Mendes D.T., Krasnopolskaya A.V., Duvayarova T.M., Soldatov O.M., Galkina M.G. Iron deficiency anemia in children-athletes. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2025;70(3):87-94. (In Russ.) https://doi.org/10.21508/1027-4065-2025-70-3-87-94

Views: 238


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)