

Influence of the nutritional model on the formation of the inflammatory bowel process
https://doi.org/10.21508/1027-4065-2025-70-4-22-28
Abstract
The increased incidence of inflammatory bowel diseases is closely related to the transition of the world’s population to the Western model of nutrition, which is characterized by high consumption of processed and refined foods, red meat, sugar, saturated and trans fats, and reduced consumption of fruits, vegetables and dietary fiber. Thus, a diet high in sugars contributes to the development of inflammatory bowel diseases, causing significant changes in the composition of the intestinal microbiome and immune responses in the mucous membrane, as well as increased formation of reactive oxygen species, which disrupts the function of the intestinal barrier and promotes inflammation. A high-fat diet alters the diversity of the intestinal microbiota due to colonization of the intestine by adhesive-invasive bacterial strains and causes low-intensity inflammation in the intestinal wall, affecting the function of proteins of the dense contacts of the mucous membrane, disrupting the barrier function of the intestine. The results obtained emphasize the need for targeted nutrition interventions that will benefit patients with inflammatory bowel diseases. The integration of diet therapy with traditional drug treatment can optimize a comprehensive approach to the treatment of patients with inflammatory bowel diseases.
About the Authors
A. V. NalyotovRussian Federation
283003, Donetsk
A. I. Khavkin
Russian Federation
115093, Moscow
308015, Belgorod
M. A. Matsynina
Russian Federation
191015, Saint-Petersburg
References
1. Khavkin A.I., Nalyotov A.V., Shumilov P.V., Sitkin S.I. The effectiveness of dietary fiber in inflammatory bowel disease. Voprosy detskoj dietologii. 2024; 22 (2): 74–81. (in Russ)]. DOI: 10.20953/1727–5784–2024–2–74–81
2. Nalyotov AV, Khavkin AI, Matsynin AN. Dried fruits are an important component of diet therapy. Pediatricheskaja farmakologija. 2024; 21 (5): 462–467. (in Russ)]. DOI: 10.15690/pf.v21i5.2789
3. Khavkin A.I., Nalyotov A.V., Shumilov P.V., Matsynin A.N., Sitkin S.I. Ultra-processed foods and gut microbiome. Voprosy detskoj dietologii. 2024; 22 (5): 79–86. (in Russ)]. DOI: 10.20953/1727–5784–2024–5–79–86
4. Khavkin AI, Nalyotov A.V., Shumilov P.V., Sitkin S.I., Marchenko N.A. Dietary aspects in the treatment of inflammatory bowel disease. Voprosy detskoj dietologii. 2024; 22 (1): 51–62. (in Russ). DOI: 10.20953/1727–5784–2024–1–51–62
5. Khavkin A.I., Nalyotov A.V., Kuropyatnik P.I. Fruits and their effect on the state of the intestinal microbiota and intestinal motility. Voprosy dietologii. 2024; 14 (3): 49– 56. (in Russ)]. DOI: 10.20953/2224–5448–2024–3–49–56
6. Kamalova A.A., Safina E.R., Nizamova R.A., Zaynetdinova M.Sh., Kvitko E.M. Nutrition of children with inflammatory bowel disease. Ros Vestn Perinatol i Pediatr. 2020; 65: (5): 145–151 (in Russ)]. DOI: 10.21508/1027–4065–2020–65–5–145–151
7. Khalili H., Chan S., Lochhead P., Ananthakrishnan A.N., Hart A.R. The role of diet in the aetiopathogenesis of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2018; 15: 525–535. DOI: 10.1038/s41575–018–0022–9
8. Kamalova A.A, Safina E.R, Garina G.A, Gayfutdinova A.R. ESPEN practical guideline: Clinical Nutrition in inflammatory bowel disease. Prakticheskaja medicina. 2021; 19 (5): 67–74. (in Russ)]
9. Hou J.K., Abraham B., El-Serag H. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am J Gastroenterol. 2011; 106: 563–573. DOI: 10.1038/ajg.2011.44
10. Witek K., Wydra K., Filip M.A. high-sugar diet consumption, metabolism and health impacts with a focus on the development of substance use disorder: A narrative review. Nutrients. 2022; 14: 2940. DOI: 10.3390/nu14142940
11. Pacheco L.S., Tobias D.K., Li Y., Bhupathiraju S.N., Willett W.C., Ludwig D.S., et al. Sugar-sweetened or artificially-sweetened beverage consumption, physical activity, and risk of cardiovascular disease in adults: a prospective cohort study. Am J Clin Nutr. 2024; 119: 669–681. DOI: 10.1016/j.ajcnut.2024.01.001
12. Basson A.R., Katz J., Singh S., Celio F., Cominelli F., Rodriguez-Palacios A. Sweets and inflammatory bowel disease: patients favor artificial sweeteners and diet foods/drinks over table sugar and consume less fruits/ vegetables. Inflamm Bowel Dis. 2023; 29: 1751–1759. DOI: 10.1093/ibd/izac272
13. Racine A., Carbonnel F., Chan S.S., Hart A.R., Bueno-deMesquita H.B., Oldenburg B., et al. Dietary patterns and risk of inflammatory bowel disease in europe: results from the EPIC study. Inflammation Bowel Dis. 2016; 22: 345–354. DOI: 10.1097/MIB.0000000000000638
14. Fu T., Chen H., Chen X., Sun Y., Xie Y., Deng M., et al. Sugarsweetened beverages, artificially sweetened beverages and natural juices and risk of inflammatory bowel disease: a cohort study of 121,490 participants. Aliment Pharmacol Ther. 2022; 56: 1018–1029. DOI: 10.1111/apt.17149
15. Bischoff S.C., Kaden-Volynets V., Filipe Rosa L., Guseva D., Seethaler B. Regulation of the gut barrier by carbohydrates from diet — Underlying mechanisms and possible clinical implications. Int J OF Med Microbiol. 2021; 311: 151499. DOI: 10.1016/j.ijmm.2021.151499
16. Khan S., Waliullah S., Godfrey V., Khan M., Ramachandran R.A., Cantarel B.L., et al. Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice. Sci Trans Med. 2020; 12: eaay6218. DOI: 10.1126/scitranslmed.aay6218
17. Kim S., Shin Y.C., Kim T.Y., Kim Y., Lee Y.S., Lee S.H., et al. Mucin degrader Akkermansia muciniphila accelerates intestinal stem cell-mediated epithelial development. Gut Microbes. 2021; 13: 1–20. DOI: 10.1080/19490976.2021.1892441
18. Ashrafian F., Behrouzi A., Shahriary A., Ahmadi Badi S., Davari M., Khatami S., et al. Comparative study of effect of Akkermansia muciniphila and its extracellular vesicles on toll-like receptors and tight junction. Gastroenterol Hepatol bed to bench. 2019; 12: 163–168
19. Montrose D.C., Nishiguchi R., Basu S., Staab H.A., Zhou X.K., Wang H., et al. Dietary fructose alters the composition, localization, and metabolism of gut microbiota in association with worsening colitis. Cell Mol Gastroenterol Hepatol. 2021; 11: 525–550. DOI: 10.1016/j.jcmgh.2020.09.008
20. Beisner J., Gonzalez-Granda A., Basrai M., DammsMaChado A., Bischoff S.C. Fructose-induced intestinal microbiota shift following two types of short-term highfructose dietary phases. Nutrients. 2020; 12: 3444. DOI: 10.3390/nu12113444
21. Laffin M., Fedorak R., Zalasky A., Park H., Gill A., Agrawal A., et al. High-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal short-chain fatty acids in mice. Sci Rep. 2019; 9: 12294. DOI: 10.1038/s41598–019–48749–2
22. Wang T., Yan H., Lu Y., Li X., Wang X., Shan Y., et al. Anti-obesity effect of Lactobacillus rhamnosus LS-8 and Lactobacillus crustorum MN047 on high-fat and high-fructose diet mice base on inflammatory response alleviation and gut microbiota regulation. Eur J Nutr. 2020; 59: 2709–2728. DOI: 10.1007/s00394–019–02117–y
23. Zhou M., Liu X., He J., Xu X., Ju C., Lou Sh., et al. High-fructose corn syrup aggravates colitis via microbiota dysbiosis-mediated Th17/Treg imbalance. Clin Sci (London England: 1979). 2023; 137: 1619–1635. DOI: 10.1042/CS20230788
24. Shon W.J., Jung M.H., Kim Y., Kang G.H., Choi E.Y., Shin D.M. Sugar-sweetened beverages exacerbate highfat diet-induced inflammatory bowel disease by altering the gut microbiome. J Nutr Biochem. 2023; 113: 109254. DOI: 10.1016/j.jnutbio.2022.109254
25. Cho Y.E., Kim D.K., Seo W., Gao B., Yoo S.H., Song B.J. Fructose promotes leaky gut, endotoxemia, and liver fibrosis through ethanol-inducible cytochrome P450– 2E1–mediated oxidative and nitrative stress. Hepatology. 2021; 73: 2180–2195. DOI: 10.1002/hep.30652
26. Song G., Gan Q., Qi W., Wang Y., Xu M., Li Y. Fructose stimulated colonic arginine and proline metabolism dysbiosis, altered microbiota and aggravated intestinal barrier dysfunction in DSS-induced colitis rats. Nutrients. 2023; 15: 782. DOI: 10.3390/nu15030782
27. Burr A., Ji J., Ozler K., Mentrup H.L., Eskiocak O., Yueh B., et al. Excess dietary sugar alters colonocyte metabolism and impairs the proliferative response to damage. Cell Mol Gastroenterol Hepatol. 2023; 16: 287–316. DOI: 10.1016/j.jcmgh.2023.05.001
28. Zhang D., Jin W., Wu R., Li J., Park S.A., Tu E., et al. High glucose intake exacerbates autoimmunity through reactive-oxygen-species-mediated TGF-b Cytokine activation. Immunity. 2019; 51: 671–681.e5. DOI: 10.1016/j.immuni.2019.08.001
29. Tan J., Ni D., Wali J.A., Cox D.A., Pinget G.V., Taitz J., et al. Dietary carbohydrate, particularly glucose, drives B cell lymphopoiesis and function. iScience. 2021; 24: 102835. DOI: 10.1016/j.isci.2021.102835
30. Jaiswal N., Agrawal S., Agrawal A. High fructose-induced metabolic changes enhance inflammation in human dendritic cells. Clin Exp Immunol. 2019; 197: 237–249. DOI: 10.1111/cei.13299
31. Jones N., Blagih J., Zani F., Rees A., Hill D.G., Jenkins B.J., et al. Fructose reprogrammes glutamine-dependent oxidative metabolism to support LPSinduced inflammation. Nat Commun. 2021; 12: 1209. DOI: 10.1038/s41467–021–21461–4
32. Buttó L.F., Haller D. Dysbiosis in intestinal inflammation: Cause or consequence. Int J Med Microbiol. 2016; 306: 302– 309. DOI: 10.1016/j.ijmm.2016.02.010
33. Wang L., Ji T., Yuan Y., Fu H., Wang Y., Tian S., et al. Highfructose corn syrup promotes proinflammatory Macrophage activation via ROS-mediated NF-kB signaling and exacerbates colitis in mice. Int Immunopharmacol. 2022; 109: 108814. DOI: 10.1016/j.intimp.2022.108814
34. Velázquez K.T., Enos R.T., Bader J.E., Sougiannis A.T., Carson M.S., Chatzistamou I., et al. Prolonged high-fat-diet feeding promotes non-alcoholic fatty liver disease and alters gut microbiota in mice. World J Hepatol. 2019; 11: 619–637. DOI: 10.4254/wjh.v11.i8.619
35. Arora T., Bäckhed F. The gut microbiota and metabolic disease: current understanding and future perspectives. J Intern Med. 2016; 280: 339–349. DOI: 10.1111/joim.2016.280.issue-4
36. Dang Y., Ma C., Chen K., Chen Y., Jiang M., Hu K., et al. The effects of a high-fat diet on inflammatory bowel disease. Biomolecules. 2023; 13: 905. DOI: 10.3390/biom13060905
37. Martinez-Medina M., Denizot J., Dreux N., Robin F., Billard E., Bonnet R., et al. Western diet induces dysbiosis with increased E coli in CEABAC10 mice, alters host barrier function favouring AIEC colonisation. Gut. 2014; 63: 116–124. DOI: 10.1136/gutjnl-2012–304119
38. Haghikia A., Jörg S., Duscha A., Berg J., Manzel A., Waschbisch A., et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity. 2015; 43: 817–829. DOI: 10.1016/j.immuni.2015.09.007
39. Xie R., Sun Y., Wu J., Huang S., Jin G., Guo Z., et al. Maternal high fat diet alters gut microbiota of offspring and exacerbates DSS-induced colitis in adulthood. Front Immunol. 2018; 9: 2608. DOI: 10.3389/fimmu.2018.02608
40. Kirpich I.A., Feng W., Wang Y., Liu Y., Barker D.F., Barve Sh.S., et al. The type of dietary fat modulates intestinal tight junction integrity, gut permeability, and hepatic toll-like receptor expression in a mouse model of alcoholic liver disease. Alcohol Clin Exp Res. 2012; 36: 835–846. DOI: 10.1111/j.1530–0277.2011.01673
41. Murakami Y., Tanabe S., Suzuki T. High-fat diet-induced intestinal hyperpermeability is associated with increased bile acids in the large intestine of mice. J Food Sci. 2016; 81: H216– 22. DOI: 10.1111/jfds.2016.81.issue-1
Review
For citations:
Nalyotov A.V., Khavkin A.I., Matsynina M.A. Influence of the nutritional model on the formation of the inflammatory bowel process. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2025;70(4):22–28. (In Russ.) https://doi.org/10.21508/1027-4065-2025-70-4-22-28