Preview

Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics)

Advanced search

Experience of using whole genome sequencing for diagnostics of X-linked hypophosphatemic rickets on the example of two cases

https://doi.org/10.21508/1027-4065-2025-70-6-95-103

Abstract

X-linked dominant hypophosphatemic rickets is the most common inherited form of hypophosphatemic rickets, characterized by renal dysfunction, skeletal deformities, and other multi-organ complications. In Russia, since 2022, the first targeted therapy has been approved for clinical use — Burosumab, a monoclonal antibody directed against fibroblast growth factor 23. Initiation of treatment requires confirmation of the diagnosis through molecular genetic testing. This study presents two clinical case reports of patients with X-linked dominant hypophosphatemic rickets. The clinical diagnosis was established at the ages of 7 and 12 years based on a characteristic biochemical profile and radiographic findings. However, causative variants in the PHEX gene (c.2147+1197A>G and chrX:22030553_22033026del) were identified only after whole-genome sequencing, followed by detailed analysis of next-generation sequencing data.

About the Authors

A. A. Buianova
Veltischev Research and Clinical Institute for pediatrics and pediatric surgery at the Pirogov Russian National Research Medical University
Russian Federation

125412, Moscow 



A. V. Rozhkova
Veltischev Research and Clinical Institute for pediatrics and pediatric surgery at the Pirogov Russian National Research Medical University
Russian Federation

125412, Moscow 



O. P. Parshina
Veltischev Research and Clinical Institute for pediatrics and pediatric surgery at the Pirogov Russian National Research Medical University
Russian Federation

125412, Moscow 



A. A. Kudakaeva
Veltischev Research and Clinical Institute for pediatrics and pediatric surgery at the Pirogov Russian National Research Medical University
Russian Federation

125412, Moscow 



E. V. Vasilyev
Veltischev Research and Clinical Institute for pediatrics and pediatric surgery at the Pirogov Russian National Research Medical University
Russian Federation

125412, Moscow 



I. S. Dantsev
Veltischev Research and Clinical Institute for pediatrics and pediatric surgery at the Pirogov Russian National Research Medical University
Russian Federation

125412, Moscow 



E. A. Nikolaeva
Veltischev Research and Clinical Institute for pediatrics and pediatric surgery at the Pirogov Russian National Research Medical University
Russian Federation

125412, Moscow 



References

1. Kulikova K.S., Tiulpakov A.N. Hypophosphatemic rickets: pathogenesis, diagnosis and treatment. Ozhirenie i metabolizm. 2018; 15(2): 46–50. (in Russ.) DOI: 10.14341/omet9672

2. Laurent M.R., Harvengt P., Mortier G.R., Böckenhauer D. X-Linked Hypophosphatemia. 2012 Feb 9 [updated 2023 Dec 14]. In: Adam M.P., Feldman J., Mirzaa G.M., Pagon R.A., Wallace S.E., Amemiya A., editors. GeneReviews®️ [Internet]. Seattle (WA): University of Washington, Seattle; 1993– 2025. https://www.ncbi.nlm.nih.gov/books/NBK83985/# \ Ссылка активна на 14.07.2025

3. Federal State Statistics Service (in Russ) https://rosstat.gov.ru/folder/313/document/197667 \ Ссылка активна на 14.07.2025

4. Razali N.N., Hwu T.T., Thilakavathy K. Phosphate homeostasis and genetic mutations of familial hypophosphatemic rick-ets. J Pediatr Endocrinol Metab. 2015; 28(9–10): 1009–1017. DOI: 10.1515/jpem-2014-0366

5. Thompson D.L., Sabbagh Y., Tenenhouse H.S., Roche P.C., Drezner M.K., Salisbury J.L., et al. Ontogeny of Phex/PHEX protein expression in mouse embryo and subcellular localization in osteoblasts. J Bone Miner Res. 2002; 17(2): 311–320. DOI: 10.1359/jbmr.2002.17.2.311

6. Kamenický P., Briot K., Munns C.F., Linglart A. X-linked hypophosphataemia. Lancet. 2024; 404(10455): 887–901. DOI: 10.1016/S0140-6736(24)01305-9

7. Haffner D., Emma F., Eastwood D.M., Duplan M.B., Bacchetta J., Schnabel D., et al. Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat Rev Nephrol. 2019; 15(7): 435– 455. DOI: 10.1038/s41581-019-0152-5

8. Imel E.A., Glorieux F.H., Whyte M.P., Munns C.F., Ward L.M., Nilsson O., et al. Burosumab versus conventional therapy in children with X-linked hypophosphataemia: a randomised, active-controlled, open-label, phase 3 trial. Lancet. 2019; 393(10189): 2416–2427. DOI: 10.1016/S0140-6736(19)30654-3

9. Imel E.A. Burosumab for Pediatric X-Linked Hypophosphatemia. Curr Osteoporos Rep. 2021; 19(3): 271–277. DOI: 10.1007/s11914-021-00669-9

10. Ward L.M., Glorieux F.H., Whyte M.P., Munns C.F., Portale A.A., Högler W., et al. Effect of Burosumab Compared With Conventional Therapy on Younger vs Older Children With X-linked Hypophosphatemia. J Clin Endocrinol Metab. 2022; 107(8): e3241-e3253. DOI: 10.1210/clinem/dgac296

11. Kulikova K., Tyulpakov A. Diagnosis and management of X-linked dominant hypophosphatemic rickets. Moscow: Triumf, 2023: 44 (in Russ.)

12. Marcel M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal. 2011; 17(1). DOI: 10.14806/ej.17.1.200

13. Heng L. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Source: arXiv. 2013. DOI: 10.48550/arXiv.1303.3997

14. Faust G.G., Hall I.M. SAMBLASTER: fast duplicate marking and structural variant read extraction. Bioinformatics. 2014; 30(17): 2503–2505. DOI: 10.1093/bioinformatics/btu314

15. “Picard Toolkit.” 2019. Broad Institute, GitHub Repository. Broad Institute. https://broadinstitute.github.io/picard/. \ Ссылка активна на 14.07.2025

16. Danecek P., Bonfield J.K., Liddle J., Marshall J., Ohan V., Pollard M.O., et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021; 10(2): giab008. DOI: 10.1093/gigascience/giab008

17. Poplin R., Ruano-Rubio V., DePristo M.A., Fennell T.J., Carneiro M.O., Van der Auwera G.A., et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv. 2017. DOI: 10.1101/201178

18. Van der Auwera G.A., Carneiro M.O., Hartl C., Poplin R., Del Angel G., Levy-Moonshine A., et al. From FastQ Data to High-- Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Curr Protoc Bioinformatics. 2013; 43(1110): 11.10.1–11.10.33. DOI: 10.1002/0471250953.bi1110s43

19. McLaren W., Gil L., Hunt S.E., Riat H.S., Ritchie G.R., Thormann A., et al. The Ensembl Variant Effect Predictor. Genome Biol. 2016; 17(1): 122. DOI: 10.1186/s13059-016-0974-4

20. Roller E., Ivakhno S., Lee S., Royce T., Tanner S. Canvas: versatile and scalable detection of copy number variants. Bioinformatics. 2016; 32(15): 2375–2377. DOI: 10.1093/bioinformatics/btw163

21. Chen X., Schulz-Trieglaff O., Shaw R., Barnes B., Schlesinger F., Källberg M., et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics. 2016; 32(8): 1220–1222. DOI: 10.1093/bioinformatics/btv710

22. Robinson J.T., Thorvaldsdóttir H., Winckler W., Guttman M., Lander E.S., Getz G., et al. Integrative genomics viewer. Nat Biotechnol. 2011; 29(1): 24–26. DOI: 10.1038/nbt.1754

23. Grimbly C., Ludwig K., Wu Z., Caluseriu O., Rosolowsky E., Alexander R.T., et al. X-linked hypophosphatemia caused by a deep intronic variant in PHEX identified by PCR-based RNA analysis of urine-derived cells. Bone. 2023; 176: 116839. DOI: 10.1016/j.bone.2023.116839

24. Stenson P.D., Mort M., Ball E.V., Chapman M., Evans K., Azevedo L., et al. The Human Gene Mutation Database (HGMD®️): optimizing its use in a clinical diagnostic or research setting. Hum Genet. 2020; 139(10): 1197–1207. DOI: 10.1007/s00439-020-02199-3

25. Koponen L., Pekkinen M., Legebeke J., Muurinen M., Rusanen S., Hussain S. A deep intronic PHEX variant associated with X-linked hypophosphatemia in a Finnish family. JBMR Plus. 2024; 9(2): ziae169. DOI: 10.1093/jbmrpl/ziae169

26. Capelli S., Donghi V., Maruca K., Vezzoli G., Corbetta S., Brandi M.L., et al. Clinical and molecular heterogeneity in a large series of patients with hypophosphatemic rickets. Bone. 2015; 79: 143–149. DOI: 10.1016/j.bone.2015.05.040

27. Quinlan C., Guegan K., Offiah A., Neill R.O., Hiorns M.P., Ellard S., et al. Growth in PHEX-associated X-linked hypophosphatemic rickets: the importance of early treatment. Pediatr Nephrol. 2012; 27(4): 581–588. DOI: 10.1007/s00467-011-2046-z

28. Beck-Nielsen S.S., Brixen K., Gram J., Brusgaard K. Mutational analysis of PHEX, FGF23, DMP1, SLC34A3 and CLCN5 in patients with hypophosphatemic rickets. J Hum Genet. 2012; 57(7): 453–458. DOI: 10.1038/jhg.2012.56

29. Lin Y., Xu J., Li X., Sheng H., Su L., Wu M., et al. Novel variants and uncommon cases among southern Chinese children with X-linked hypophosphatemia. J Endocrinol Invest. 2020; 43(11): 1577–1590. DOI: 10.1007/s40618-020-01240-6

30. Park P.G., Lim S.H., Lee H., Ahn Y.H., Cheong H.I., Kang H.G. Genotype and Phenotype Analysis in X-Linked Hypophosphatemia. Front Pediatr. 2021; 9: 699767. DOI: 10.3389/fped.2021.699767

31. Rodríguez-Rubio E., Gil-Peña H., Chocron S., Madariaga L., de la Cerda-Ojeda F., Fernández-Fernández M., et al Phenotypic characterization of X-linked hypophosphatemia in pediatric Spanish population. [published correction appears in Orphanet J Rare Dis. Orphanet J Rare Dis. 2021; 16(1): 104. DOI: 10.1186/s13023-021-01729-0


Review

For citations:


Buianova A.A., Rozhkova A.V., Parshina O.P., Kudakaeva A.A., Vasilyev E.V., Dantsev I.S., Nikolaeva E.A. Experience of using whole genome sequencing for diagnostics of X-linked hypophosphatemic rickets on the example of two cases. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2025;70(6):95-103. (In Russ.) https://doi.org/10.21508/1027-4065-2025-70-6-95-103

Views: 28

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)