Перинатальное программирование и старение кардиомиоцитов


https://doi.org/10.21508/1027-4065-2017-62-1-33-39

Полный текст:


Аннотация

Гипотеза «программирования состояний здоровья и болезней, связанных с развитием» предполагает, что условия развития организма во внутриутробном и раннем постнатальном периодах таким образом влияют на экспрессию генов, что «программируют» раннее появление сердечно-сосудистых и метаболических заболеваний. Экспериментальные исследования демонстрируют большую роль эпигенетических механизмов (метилирование генов) в реализации такого сценария. В обзоре приводятся данные, показывающие, что перинатальное программирование может ускорять процессы старения, следствием чего является ранний дебют указанных заболеваний. Рассматривается значение гипоксии плода как фактора, ведущего к рождению детей с увеличенным риском формирования патологии мозга, сердца, печени, почек, развития артериальной гипертензии и метаболических нарушений в последующей жизни. Обсуждается роль оксидативного стресса и активных соединений кислорода в процессах перинатального программирования.


Об авторах

О. П. Ковтун
ФГБОУ ВО «Уральский государственный медицинский университет» Минздрава России
Россия

д.м.н., проф., член корр. РАН, первый проректор Уральского государственного медицинского университета 620028 Екатеринбург, ул. Репина, д.3



П. Б. Цывьян
ФГБОУ ВО «Уральский государственный медицинский университет» Минздрава России ФГБУ «Уральский НИИ охраны материнства и младенчества» Минздрава России
Россия

д.м.н., проф., зав.кафедрой нормальной физиологии Уральского государственного медицинского университета, вед.н.с. Уральского НИИ охраны материнства и младенчества 620028 Екатеринбург, ул. Репина, д.1



О. Э. Соловьева
ФГБУН Институт иммунологии и физиологии УрО РАН
Россия

д.ф-м.н., проф., зав. лабораторией математической физиологии Института иммунологии и физиологии 620137 Екатеринбург, ул. Первомайская, д. 30



Список литературы

1. Barker D.J.P. Rise and fall of Western diseases. Nature 1989; (338): 371–372.

2. Barker D.J.P., Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1986; 327: 8496: i 1077–1081.

3. Ковтун О.П., Цывьян П.Б. Перинатальное программирование артериальной гипертензии у ребенка. Вестн РАМН 2013; (6): 34–38. [Kovtun O.P., Tsyvian P.B. Perinatal programming of arterial hypertension in child. Vestnik RAMN 2013; (6): 34–38. (in Russ)]

4. Roseboom T.J., van der Meulen J., Ravelli A.C.J. Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Mol Cell Endocrinol 2001; (185): 93–98.

5. Lillycrop K.A., Phillips E.S., Jackson A.A. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 2005; (135): 1382–1386.

6. Lakatta E.G. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises Part III: cellular and molecular clues to heart and arterial aging. Circulation: New Frontiers 2003; (107): 490–497.

7. Bernhard D., Laufer G. The aging cardiomyocyte. Gerontology 2008; (54): 24–31.

8. Lakatta E.G. Why cardiovascular function may decline with age. Geriatrics 1987; (42): 84–87.

9. Fleg J.L., O’Connor F., Gerstenblith G., Becker L.C., Clulow J., Schulman S.P., Lakatta E.G. Impact of age on the cardiovascular response to dynamic upright exercise in healthy men and women. J Appl Physiol 1995; (78): 890–900.

10. Anversa P., Leri A., Kajstura J. Cardiac regeneration. J Am Coll Cardiol 2006; (47): 1769–1776.

11. Chimenti C., Kajstura J., Torella D., Urbanek K., Heleniak H., Colussi C. et al. Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circ Res 2003; (93): 604–613. DOI: 10.1161/01.RES.0000093985.76901.AF

12. Chen X., Wilson R.M., Kubo H. Adolescent feline heart contains a population of small, proliferative ventricular myocytes with immature physiological properties. Circ Res 2007; 100: 536–544.

13. Hacker T.A., McKiernan S.H., Douglas P.S. Age-related changes in cardiac structure and function in Fischer 344 x Brown Norway hybrid rats. Am J Physiol 2006; 290: H304–H311.

14. Anversa P., Palackal T., Sonnenblick E.H., Olivetti G., Meggs L.G., Capasso J.M. Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart. Circ Res 1990; (67): 871–885.

15. Urbanek K., Quaini F., Tasca G. Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc Natl Acad Sci USA 2003; (100): 10440–10445.

16. Turturro A., Witt W.W., Lewis S., Hass B.S., Lipman R.D., Hart R.W. Growth curves and survival characteristics of the animals used in the biomarkers of aging program. J Gerontol 1999; 54: B492– 501.

17. Lindsey M.L., Coshorn D.K., Squiers C.E. Age-dependent changes in myocardial matrix metalloproteinase/tissue inhibitor. Cardiovasc Res 2005; 66: (2): 410–419.

18. Ceylan-Isik A.F., Dong M., Zhang Y., Dong F., Turdi S., Nair S., Yanagisawa M., Ren J. Cardiomyocyte specific deletion of endothelin receptor A rescues aging-associated cardiac hypertrophy and contractile dysfunction: role of autophagy. Basic Res Cardiol 2013;108: 335 -338. DOI: 10.1007/s00395-013-0335-3.

19. Tang T., Hammond H.K., Firth A., Yang Y., Gao M.H., Yuan J.X., Lai N.C. Adenylyl cyclase 6 improves calcium uptake and left ventricular function in aged hearts. J Am Coll Cardiol 2011; (57): 1846–1855. DOI: 10.1016/j.jacc.2010.11.052.

20. Jiang M.T., Moffat M.P., Narayanan N. Age-related alterations in the phosphorylation of sarcoplasmic reticulum and myofibrillar proteins and diminished contractile response to isoproterenol in intact rat ventricle. Circ Res 1993; (72): 102–111.

21. Lim C.C., Liao R., Varma N. Impaired lusitropy-frequency in the aging mouse: role of Ca(2+)-handling proteins and effects of isoproterenol. Am J Physiol 1999; 277: H2083–2090.

22. Wahr P.A., Michele D.E., Metzger J.M. Effects of aging on single cardiac myocyte function in Fischer 344 × Brown Norway rats. Am J Physiol Heart Circ Physiol 2000; 279: H559–565.

23. Buttrick P., Malhotra A., Factor S. Effect of aging and hypertension on myosin biochemistry and gene expression in the rat heart. Circ Res 1991; (68): 645–652.

24. Sakai M., Danziger R.S., Xiao R.P., Spurgeon H.A., Lakatta E.G. Contractile response of individual cardiac myocytes to norepinephrine declines with senescence. Am J Physiol 1992; 262: H184–189.

25. Campbell S.G., Haynes P., Kelsey-Snappe W. Altered ventricular torsion and transmural patterns of myocyte relaxation precede heart failure in aging F344 rats. Am J Physiol Heart Circ Physiol 2013; 305: H676–686.

26. Zhu X., Altschafl B.A., Hajjar R.J., Valdivia H.H., Schmidt U. Altered Ca 2+ sparks and gating properties of ryanodine receptors in aging cardiomyocytes. Cell Calcium 2005; (37): 583–591. DOI: 10.1016/j.ceca.2005.03.002

27. Milani-Nejad N., Janssen P.M. Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacol Ther 2014; (141): 235–249.

28. Barbiery M., Varani K., Cerbai E. Electrophysiological basis for the enhanced cardiac arrhythmogenic effect of isoprenaline in aged spontaneously hypertensive rats. J Mol Cell Cardiol 1994; (26): 849–860.

29. Liu S.J., Wyeth R.P., Melchert R.B. Aging-associated changes in whole cell K(+) and L-type Ca(2+) currents in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 2000; 279: H889–900.

30. Bao L., Taskin E., Foster M., Ray B., Rosario R., Ananthakrishnan R. et al. Alterations in ventricular K(ATP) channel properties during aging. Aging Cell 2013; (12): 167–176. DOI: 10.1111/acel.12033.

31. Cooper L.L., Li W., Lu Y., Centracchio J., Terentyeva R., Koren G., Terentyev D. Redox modification of ryanodine receptors by mitochondria-derived reactive oxygen species contributes to aberrant Ca 2+ handling in ageing rabbit hearts. J Physiol 2013; (591): 5895– 5911. DOI: 10.1113/jphysiol.2013.260521.

32. Zhang G.Q., Wang H., Liu W.T., Dong H., Fong W.F., Tang L.M. et al. Long-term treatment with a Chinese herbal formula, Sheng-Mai-San, improves cardiac contractile function in aged rats: the role of Ca(2+) homeostasis. Rejuvenation Res 2008; (11): 991–1000. DOI: 10.1089/rej.2008.0771.

33. Dibb K.M., Rueckschloss U., Eisner D.A. Mechanisms underlying enhanced cardiac excitation contraction coupling observed in the senescent sheep myocardium. J Mol Cell Cardiol .2004; (37): 1171–1181.

34. Assayag P., Charlemagne D, Marty I., de Leiris J., Lompré A.M., Boucher F. et al. Effects of sustained low-flow ischemia on myocardial function and calcium-regulating proteins in adult and senescent rat hearts. Cardiovasc Res 1998; (38): 169–180.

35. Kaplan P., Jurkovicova D., Babusikova E., Hudecova S., Racay P., Sirova M. et al. Effect of aging on the expression of intracellular Ca(2+) transport proteins in a rat heart. Mol Cell Biochem 2007; 301(1–2): 219–226. DOI: 10.1007/s11010-007-9414-9.

36. Taffet G.E., Tate C.A. CaATPase content is lower in cardiac sarcoplasmic reticulum isolated from old rats. Am J Physiol 1993; 264: H1609–1614.

37. Leri A., Franco S., Zacheo A. Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation. EMBO J 2003; (22): 131–139.

38. Bodyak N., Kang P.M., Hiromura M., Sulijoadikusumo I., Horikoshi N., Khrapko K., Usheva A. Gene expression profiling of the aging mouse cardiac myocytes. Nucl Acids Res 2002; (30): 3788–3794.

39. Park S.K., Prolla T.A. Gene expression profiling studies of aging in cardiac and skeletal muscles. Cardiovasc Res 2005; (66): 205–212.

40. Jones S.A., Lancaster M.K., Boyett M.R. Ageing-related changes of connexins and conduction within the sinoatrial node. J Physiol 2004; (560): 429–437.

41. Boengler K., Heusch G., Schulz R. Connexin 43 and ischemic preconditioning: effects of age and disease. Exp Gerontol 2006; (41): 485–488.

42. Abbate A., Scarpa S., Santini D. Myocardial expression of survivin, an apoptosis inhibitor, in aging and heart failure. An experimental study in the spontaneously hypertensive rat. Int J Cardiol 2006; (111): 371–376.

43. Fang C.X., Doser T.A., Yang X. Metallothionein antagonizes aginginduced cardiac contractile dysfunction: role of PTP1B, insulin receptor tyrosine phosphorylation and Akt. Aging Cell 2006; (5): 177–185.

44. Tsujita Y., Muraski J., Shiraishi I., Kato T., Kajstura J., Anversa P., Sussman M.A. Nuclear targeting of Akt antagonizes aspects of cardiomyocyte hypertrophy. Proc Natl Acad Sci USA 2006; (103): 11946–11951. DOI: 10.1073/pnas.0510138103.

45. Lieber S.C., Aubry N., Pain J., Diaz G., Kim S.J., Vatner S.F. Aging increases stiffness of cardiac myocytes measured by atomic force microscopy nanoindentation. Am J Physiol 2004; 287: H645–651. DOI: 10.1152/ajpheart.00564.2003.

46. Terman A., Brunk U.T. Autophagy in cardiac myocyte homeostasis, aging, and pathology. Cardiovasc Res 2005; (68): 355–365.

47. Domenighetti A.A., Wang Q., Egger M., Richards S.M., Pedrazzini T., Delbridge L.M. Angiotensin II-mediated phenotypic cardiomyocyte remodeling leads to age-dependent cardiac dysfunction and failure. Hypertension 2005; (46): 426–432. DOI: 10.1161/01.HYP.0000173069.53699.d9.

48. Nesterenko T.H., Aly H. Fetal and neonatal programming: evidence and clinical implications. Journal of Perinatology 2009; 26: (3): 191–198.

49. Barnes S.K., Ozanne S.E. Pathways linking the early environment to long-term health and lifespan. Progr Biophys Mol Biol 2011; 106: (1): 323–336.

50. Curhan G.C., Willett W.C., Rimm E.B. Birth weight and adult hypertension, diabetes mellitus obesity in US men. Circulation 1996; 94: (12): 3246–3250

51. Hitchler M.J., Domann F.E. An epigenetic perspective on the free radical theory of development. Free Radical Biol Med 2007: 43: (7): 1023–1036.

52. Schafer F.Q., Buettner G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biol Med 2001; (30): 1191–1212.

53. Thompson L.V. Oxidative stress, mitochondria and mtDNAmutator mice. Exp Gerontol 2006; (41): 1220–1222.

54. Symonds M.E., Stephenson T. Long-term effects of nutritional programming of the embryo and fetus: mechanisms and critical windows. Reprod Fertil Devel 2007; (19): 53–63.

55. Roberts J.M., Lain K.Y. Recent insights into the pathogenesis of pre-eclampsia. Placenta 2002; 23: (5): 359–372.

56. Moore L.G. Human genetic adaptation to high altitude. High Altitude Med Biol. 2001; (2): 257–279.

57. Niermeyer S., Mollinedo P.A. Huicho L. Child health and living at high altitude. Arch Disease Childhood 2009; 94: (10): 806–811.

58. Dong Y., Yu Z., Sun Y., Zhou H., Stites J., Newell K., Weiner C.P. Chronic fetal hypoxia produces selective brain injury associated with altered nitric oxide synthases. Amer J Obstet Gynecol 2011; 204: (3): 254e16–254e28. DOI: 10.1016/j.ajog.2010.11.032.

59. Gunn A.J., Bennet L. Fetal hypoxia insults and patterns of brain injury: insights from animal models. Clin Perinatol 2009; 36: (3): 579–593.

60. Dong Y., Thompson L.P. Differential expression of endothelial nitric oxide synthase in coronary and cardiac tissue in hypoxic fetal guinea pig hearts. J Soc Gynecol Investig. 2006; 13: (7): 483–490.

61. Mao C., Hou J., Ge J., Hu Y., Ding Y., Zhou Y. et al. Changes of renal AT1/AT2 receptors and structures in ovine fetuses following exposure to long-term hypoxia. Amer J Nephrol 2010; 31: (2): 141–150. DOI: 10.1159/000259901.

62. Shao D., Oka S., Brady C.D., Haendeler J., Eaton P., Sadoshima J. Redox modification of cell signaling in the cardiovascular system. J Mol Cell Cardiol 2012; 52: (3): 550–558. DOI: 10.1016/j.yjmcc.2011.09.009.

63. Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; (82): 47–95.

64. Ziech D., Franco R., Pappa A. Reactive oxygen species (ROS)–induced genetic and epigenetic alterations in human carcinogenesis. Mutation Res 2011; (711): 167–173.

65. Cerda S., Weitzman S.A. Influence of oxygen radical injury on DNA methylation Mutation Res 1997; 386: (2): 141–152.

66. Singhal A., Lucas A. Early origins of cardiovascular disease: is there a unifying hypothesis? Lancet 2004; 363; (9421): 1642–1645.

67. Mohn A., Chiavaroli V., Cerruto M., Blasetti A., Giannini C., Bucciarelli T., Chiarelli F. Increased oxidative stress in prepubertal children born small for gestational age. J Clin Endocrinol Metab 2007; 92; (4): 1372–1378. DOI: 10.1210/jc.2006-1344.

68. Chiavaroli V., Giannini C., D’Adamo E. Insulin resistance and oxidative stress in children born small and large for gestational age. Pediatrics 2009; 124: (2): 695–702.

69. Bayhan G., Yu. Kocyigit Y., Atamer A. Potential atherogenic roles of lipids, lipoprotein(a) and lipid peroxidation in preeclampsia. Gynecol Endocrinol 2005; 21: (1): 1–6.

70. Atamer Y., Kocyigit Y., Yokus B. Lipid peroxidation, antioxidant defense, status of trace metals and leptin levels in preeclampsia. Europ J Obstet Gynecol Reprod Biol 2005; (119): 60–66.

71. Cambone G., Comte B., Yzydorczyk C., Ntimbane T., Germain N., Lê N.L. et al. Antenatal antioxidant prevents adult hypertension, vascular dysfunction, and microvascular rarefaction associated with in utero exposure to a low-protein diet. Amer J Physiol 2007; 292; 3: R1236–R1245. DOI: 10.1152/ajpregu.00227.2006.

72. Roghair R.D., Miller F.J., Scholz T.D. Endothelial superoxide production is altered in sheep programmed by early gestation dexamethasone exposure. Neonatology 2007; (93): 19–27.

73. Herrera E.A., Verkerk M.M., Derks J.B. Antioxidant treatment alters peripheral vascular dysfunction induced by postnatal glucocorticoid therapy in rats. PLoS ONE 2010; 5: e9250 –e9252.

74. Yzydorczyk C., Comte B., Cambonie G., Lavoie J.C., Germain N., Ting Shun Y. et al. Neonatal oxygen exposure in rats leads to cardiovascular and renal alterations in adulthood. Hypertension 2008; 52: (5): 889–895. DOI: 10.1161/hypertensionaha.108.116251.

75. Morton A., Rueda-Clausen C.F., Davidge S.T. Mechanisms of endothelium-dependent vasodilation in male and female, young and aged offspring born growth restricted. Amer J Physiol 2010; 298: (4): R930–R938.


Дополнительные файлы

Для цитирования: Ковтун О.П., Цывьян П.Б., Соловьева О.Э. Перинатальное программирование и старение кардиомиоцитов. Российский вестник перинатологии и педиатрии. 2017;62(1):33-39. https://doi.org/10.21508/1027-4065-2017-62-1-33-39

For citation: Kovtun O.P., Tsyvian P.B., Solovyeva O.E. Perinatal programming and cardiomyocyte aging. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2017;62(1):33-39. (In Russ.) https://doi.org/10.21508/1027-4065-2017-62-1-33-39

Просмотров: 4550

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)