Preview

Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics)

Advanced search

THE ROLE OF CONNECTIVE TISSUE DYSPLASIA IN CHILDREN’S CYSTIC FIBROSIS. CLINICAL AND GENETIC ASPECTS

https://doi.org/10.21508/1027-4065-2018-63-5-20-28

Abstract

The article considers the issue of cystic fibrosis – a monogenic autosomal recessive disease. It describes the history of the CFTR gene discovery, the further search for modifier genes to explain the variability of the clinical manifestations of cystic fibrosis. The review discusses problems of connective tissue dysplasia and somatic pathology, which is formed due to the connective tissue dysmorphogenesis in patients with cystic fibrosis; and also the article contains justification for the connection between the formation of severe fibrosis of the lungs and liver and the presence of clinical and genetic markers of connective tissue dysplasia. The author assumes that the clinical and genetic polymorphisms of connective tissue influence the course of cystic fibrosis, formation of bronchiectasis, interstitial pneumofibrosis, cystic fibrosis dysplasia, liver fibrosis and cirrhosis.

About the Authors

A. V. Goryainova
Russian Children’s Clinical Hospital.
Russian Federation


P. V. Shumilov
Russian Children’s Clinical Hospital.
Russian Federation


N. Yu. Kashirskaya
Medical Genetics Research Center.
Russian Federation


S. Yu. Semykin
Russian Children’s Clinical Hospital.
Russian Federation


References

1. Riordan J.R., Rommens J.M., Kerem B., Alon N., Rozmahel R., Grzelczak Z. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989; 245(4922): 1066–1073.

2. Kerem B., Rommens J.M., Buchanan J.A., Markiewicz D., Cox T.K., Chakravarti A. et al. Identification of the cystic fibrosis gene: genetic analysis. Science 1989; 245(4922): 1073–1080.

3. Castellani C., Cuppens H., Macek M.Jr. Consensus on the use and interpretation of cystic fibrosis mutation analysis in clinical practice. J Cyst Fibr2008; 7(3): 179–96. DOI: 10.1016/j.jcf.2008.03.009

4. Debray D., Kelly D., Houwen R., Strandvik B., Colombo C. Best practice guidance for the diagnosis and management of cystic fibrosis- associated liver-disease. J Cyst Fibrosis 2011; 10 (2): 29–36. DOI: 10.1016/S1569-1993(11)60006-4

5. Jentsch T.J., Maritzen T., Zdebik A.A. Chloride channel diseases resulting from impaired transepithelial transport or vesicular function. J Clin Invest 2005; 115(8): 2039–2046. DOI: 10.1172/JCI25470

6. Durie P.R., Kent G., Phillips M.J., Ackerley C.A. Characteristic multiorgan pathology of cystic fibrosis in a long-living cystic fibrosis transmembrane regulator knockout murine model. Am J Pathol 2004; 164(4): 1481–1493. DOI:10.1016/S0002-9440(10)63234-8

7. Colombo C. Liver disease in cystic fibrosis. Curr Opin Pulm Med 2007; 13(6): 529–536. DOI: 10.1097/MCP.0b013e3282f10a16

8. Ahmed N., Corey M., Forstner G., Zielenski J., Tsui L.C., Ellis L. et al. Molecular consequences of cystic fibrosis transmembrane regulator gene mutations in the exocrine pancreas. Gut 2003; 52(8): 1152–1164.

9. Zielenski J. Genotype and phenotype in cystic fibrosis. Respiration 2000; 67(2): 117–133. DOI:10.1159/000029497

10. McKone E.F., Goss C.H., Aitken M.L. CFTR genotype as a predictor of prognosis in cystic fibrosis. Chest 2006; 130(5): 1441–1447. DOI:10.1378/chest.130.5.1441

11. Brazova J., Sismova K., Vavrova V., Bartosova J., Macek M.Jr., Lauschman H. et al. Polymorphisms of TGF-beta1 in cystic fibrosis patients. Clin Immunol 2006; 121(3): 350–357. DOI: 10.1016/j.clim.2006.08.015

12. Arkwright P.D., Laurie S., Super M., Pravica V., Schwarz M.J., Webb A.K. et al. TGF-beta(1) genotype and accelerated decline in lung function of patients with cystic fibrosis. Thorax 2000; 55(6): 459–462.

13. Bremer L.A., Blackman S.M., Vanscoy L.L., McDougal K.E, Bowers A., Naughton K.M. et al. Interaction between a novel TGFB1 haplotype and CFTR genotype is associated with improved lung function in cystic fibrosis. Hum Mol Genet 2008; 17(14): 2228–2237. DOI:10.1093/hmg/ddn123

14. Drumm M.L., Konstan M.W., Schluchter M.D., Handler A., Pace R., Zou F. et al. Genetic modifiers of lung disease in cystic fibrosis. N Engl J Med 2005; 353(14): 1443–1453. DOI:10.1056/NEJMoa051469

15. Eisen D.P., Minchinton R.M. Impact of mannose-binding lectin on susceptibility to infectious diseases. Clin Infect Dis 2003; 37(11): 1496–1505. DOI:10.1086/379324

16. Buranawuti K., Boyle M.P., Cheng S., Steiner L.L., McDougal K., Fallin M.D. et al. Variants in mannose-binding lectin and tumor necrosis factor {alpha} affect survival in cystic fibrosis. J Med Genet 2007; 44(3): 209–214. DOI:10.1136/jmg.2006.046318

17. Muhlebach M.S., MacDonald S.L., Button B.M., Hubbard J.J., Turner M.L., Boucher R.C. et al. Association between mannan-binding lectin and impaired lung function in cystic fibrosis may be age-dependent. Clin Exp Immunol 2006; 145(2):302–307. DOI:10.1111/j.1365-2249.2006.03151.x

18. Yarden J., Radojkovic D., Boeck K., Macek M., Zemkova D., Vavrova V. et al. Association of tumour necrosis factor alpha variants with the CF pulmonary phenotype. Thorax 2005; 60(4): 320–325. DOI: 10.1136/thx.2004.025262

19. Schmitt-Grohe S., Stuber F., Book M., Bargon J., Wagner T.O., Naujoks C. et al. TNF-alpha promoter polymorphism in relation to TNF-alpha production and clinical status in cystic fibrosis 1. Lung 2006; 184: 99–104. DOI 10.1007/s00408-005-2568-x

20. Fregonese L., Stolk J., Frants R.R., Veldhuisen B. Alpha-1 antitrypsin null mutations and severity of emphysema. Respir Med 2008; 102(6): 876–884. DOI:10.1016/j.rmed.2008.01.009

21. Mahadeva R., Westerbeek R.C., Perry D.J, Lovegrove J.U., Whitehouse D.B., Carroll N.R. et al. Alpha1-antitrypsin deficiency alleles and the Taq-I G→A allele in cystic fibrosis lung disease. Eur Respir J 1998; 11: 873–879. DOI: 10.1183/09031936.98.11040873

22. Stonebraker J.R., Friedman K.J., Ling S.C. Genetic modifiers of severe liver disease in cystic fibrosis: a replication study. Pediatr Pulmonol Suppl 2007; 30: 381.

23. Hart M.A., Konstan M.W., Darrah R.J., Schluchter M.D., Storfer-Isser A., Xue L. et al. Beta 2 adrenergic receptor polymorphisms in cystic fibrosis. Pediatr Pulmonol 2005; 39(6): 544–550. DOI:10.1002/ppul.20210

24. Steagall W.K., Barrow B.J., Glasgow C.G., Mendoza J.W., Ehrmantraut M., Lin J.P. et al. Beta-2-adrenergic receptor polymorphisms in cystic fibrosis. Pharmacogenet Genomics 2007; 17(6): 425–430. DOI:10.1097/FPC.0b013e3280119349

25. Buscher R., Eilmes K.J., Grasemann H., Torres В., Knauer N., Sroka K. et al. beta2 adrenoceptor gene polymorphisms in cystic fibrosis lung disease. Pharmacogenetics 2002; 12 (5): 347–353.

26. Trevisiol C., Boniotto M., Giglio L., Polic F., Morgutti M., Crovella S. et al. MBL2 polymorphisms screening in a regional Italian CF center. J Cyst Fibros 2005; 4(3): 189–191. DOI:10.1016/j.jcf.2005.04.001

27. Carlsson M., Sjoholm A.G., Eriksson L., Thiel S., Jensenius J.C., Segelmark M. et al. Deficiency of the mannan-binding lectin pathway of complement and poor outcome in cystic fibrosis: bacterial colonization may be decisive for a relationship. Clin Exp Immunol 2005; 139(2): 306–313. DOI:10.1111/j.1365-2249.2004.02690.x

28. Dorfman R., Sandford A., Taylor C., Huang B., Frangolias D., Wang Y. et al. Complex two-gene modulation of lung disease severity in children with cystic fibrosis. J Clin Invest 2008; 118(3): 1040–1049. DOI: 10.1172/JCI33754

29. McKone E.F., Shao J., Frangolias D.D., Keener C.L., Shephard C.A., Farin F.M. et al. Variants of the glutamate-cysteine-ligase gene are associated with lung disease of cystic fibrosis. Am J Respir Crit Care Med 2006; 174(4): 415–419. DOI:10.1164/rccm.200508-1281OC

30. De R.V., Arduino C., Cappello N., Piana R., Salmin P., Bardessono M. et al. Fcgamma receptor IIA genotype and susceptibility to P. aeruginosa infection in patients with cystic fibrosis. Eur J Hum Genet 2005; 13(1): 96–101. DOI:10.1038/sj.ejhg.5201285

31. Grasemann H., Knauer N., Buscher R., Hübner K., Drazen J.M., Ratjen F. et al. Airway nitric oxide levels in cystic fibrosis patients are related to a polymorphism in the neuronal nitric oxide synthase gene. Am J Respir Crit Care Med 2000; 162(6): 2172–2176. DOI:10.1164/ajrccm.162.6.2003106

32. Gallati S. Disease-modifying genes and monogenic disorders: experience in cystic fibrosis. Appl Clin Genet 2014; 7: 133–146. DOI: 10.2147/TACG.S18675

33. Timkovskaya E.E., Petrova N.V., Kashirskaya N.Yu. Analysis of the gene polymorphism of TNFA, LTA, Enos, GTTM1 in patients with cystic fibrosis. VIII National Congress “Cystic fibrosis in children and adults.” Collection of articles and abstracts. Yaroslavl, 2007;151–152. (in Russ).

34. Petrova N.V., Timkovskaya E.E., Sharonova E.I., Kashirskaya N.Yu., Terekhovskaya I.G. et al. Polymorphism of the gene for mannose-binding lectin 2 in patients with cystic fibrosis homozygous for mutations F508 del. Meditsinskaya genetika (Medical Genetics) 2007; 6: 27–32. (in Russ)

35. Goh B.J., Tan B.T., Hon W.M. Nitric oxide synthase and heme oxygenase expressions in human liver cirrhosis. World J Gastroenterol 2006; 12(4): 588–594.

36. Salvatore F., Scudiero O., Castaldo G. Genothype-phenotype correlation in cystic fibrosis: The role of modifier genes. Am J Med Genet 2002; 111(1): 88–95. DOI:10.1186/1471-2350-5-8

37. Owen C.A., Campbell E.J. The cell biology of leukocyte-mediated proteolysis. J Leukoc Biol 1999; 65(2): 137–150.

38. Jabłońska-Trypuć A., Matejczyk M., Rosochacki S. Matrix metalloproteinases ( MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. Enzyme Inhib Med Chem 2016; 31(1): 177–183. DOI: 10.3109/14756366.2016.1161620

39. Duszyk M., Shu Y., Sawicki G., Radomski A., Man S.F., Radomski M.W. Inhibition of matrix metalloproteinase MMP-2 activates chloride current in human airway epithelial cells. Can J Physiol Pharmacol 1999; 77(7): 529–535.

40. Delacourt C., Le Bourgeois M., D’Ortho M.P., Doit C., Scheinmann P., Navarro J. et al. Imbalance between 95 kDa type IV collagenase and tissue inhibitor of metalloproteinases in sputum of patients with cystic fibrosis. Am J Respir Crit Care Med 1995; 152(2): 765–774.

41. Roderfeld M., Rath T., Schulz R., Seeger W., Tschuschner A., Graf J. et al. Serum matrix metalloproteinases in adult CF patients: relation to pulmonary exacerbation. J Cyst Fibros 2009; 8(5): 338–347. DOI:10.1016/j.jcf.2009.06.001

42. Devereux G., Steele S., Jagelman T., Fielding S., Muirhead R., Brady J. et al. An observational study of matrix metalloproteinase (MMP)-9 in cystic fibrosis. J Cyst Fibros 2014; 13(5): 557–563. DOI:10.1016/j.jcf.2014.01.010

43. Craig V.J., Polverino F., Laucho-Contreras M.E., Shi Y., Liu Y., Osorio J.C. et al. Mononuclear phagocytes and airway epithelial cells: novel sources of matrix metalloproteinase-8 (MMP-8) in patients with idiopathic pulmonary fibrosis. PLoS One 2014; 9(5): e97485.DOI:10.1371/journal.pone.0097485

44. Owen C.A., Hu Z., Lopez-Otin C., Shapiro S.D. Membranebound matrix metalloproteinase-8 on activated polymorphonuclear cells is a potent, tissue inhibitor of metalloproteinaseresistant collagenase and serpinase. J Immunol 2004; 172(12): 7791–7803.

45. Owen C.A., Hu Z., Barrick B., Shapiro S.D. Inducible expression of tissue inhibitor of metalloproteinases-resistant matrix metalloproteinase-9 on the cell surface of neutrophils. Am J Respir Cell Mol Biol 2003; 29(3): 283–294. DOI:10.1165/rcmb.2003-0034OC

46. Nakamura M., Miyamoto S., Maeda H., Ishii G., Hasebe T., Chiba T. et al. Matrix metalloproteinase-7 degrades all insulin-like growth factor binding proteins and facilitates insulin-like growth factor bioavailability. Biochem Biophys Res Commun 2005; 333(3): 1011–1016. DOI:10.1016/j.bbrc.2005.06.010

47. Houghton A.M., Hartzell W.O., Robbins C.S., Gomis-Ruth F.X., Shapiro S.D. Macrophage elastase kills bacteria within murine macrophages. Nature 2009; 460(7255): 637–641. DOI:10.1038/nature08181.

48. Demeestere D., Dejonckheere E., Steeland S., Hulpiau P., Haustraete J., Devoogdt N. et al. Development and validation of a small single-domain antibody that effectively inhibits matrix metalloproteinase 8. Mol Ther 2016; 24(5): 890–902. DOI:10.1038/mt.2016.2

49. Craig V.J., Zhang L., Hagood J.S., Owen C.A. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 2015; 53(5): 585–600. DOI:10.1165/rcmb.2015-0020TR

50. Yamashita C.M., Dolgonos L., Zemans R.L., Young S.K., Robertson J., Briones N. et al. Matrix metalloproteinase 3 is a mediator of pulmonary fibrosis. Am J Pathol 2011; 179(4): 1733–1745. DOI: 10.1016/j.ajpath.2011.06.041

51. Cabrera S., Selman M., Lozano-Bolaños A., Konishi K., Richards T.J. et al. Gene expression profiles reveal molecular mechanisms involved in the progression and resolution of bleomycin-induced lung fibrosis. Am J Physiol Lung Cell Mol Physiol 2013; 304: L593–601. DOI: 10.1152/ajplung.00320.2012

52. Johansson N., Ahonen M., Kahari V.M. Matrix metalloproteinases in tumor invasion. Cell Mol Life Sci 2000; 57(1): 5–15. DOI:10.1007/s000180050495

53. Constantin A., Lauwers-Cancès V., Navaux F. Stromelysin 1 (matrix metalloproteinase 3) and HLA-DRB1 gene polymorphisms – association with severity and progression of rheumatoid arthritis in a prospective study. Arthritis Rheum 2002; 46(7): 1754–1762. DOI: 10.1002/art.10336

54. Scherer S., de Souza T.B., de Paoli J. Matrix metalloproteinase gene polymorphisms in patients with rheumatoid arthritis. Rheumatol 2010; 30: 369–373. DOI: https://doi.org/10.1007/s00296-009-0974-8

55. Su L., Zhou W., Asomaning K. Genotypes and haplotypes of matrix metalloproteinase 1, 3 and 12 genes and the risk of lung cancer. Carcinogenesis 2006; 27(5): 1024–1029. DOI: https://doi.org/10.1093/carcin/bgi283

56. Han Y.P., Zhou L., Wang J., Xiong S., Garner W.L., French S.W. et al. Essential role of matrix metalloproteinases in interleukin-1-induced myofibroblastic activation of hepatic stellate cell in collagen. J Biol Chem 2004; 279(6): 4820–4828. DOI:10.1074/jbc.M310999200

57. Vershinina M.V., Nechaeva G.I., Grinberg L.M., Khomenya A.A., Govorova S.E. Clinical phenotypes of respiratory syndrome in patients with connective tissue dysplasia. Rossijskaya pul’monologiya (Russian Pulmonology) 2013; 6: 21–26. (in Russ)

58. Vershinina M.V., Grinberg L.M., Nechaeva G.I., Govorova S.E, Gershevich V.M. et al. Spontaneous pheumothorax and dysplasia of the connecting tissue: phenotype characteristics. Rossijskaya pul’monologiya (Russian Pulmonology) 2011; 6: 43–47. (in Russ)

59. Nechaeva G.I., Viktorova I.A, Druk I. Connective tissue dysplasia: prevalence, phenotypic signs, associations with other diseases. Doctor 2006; 1: 19–23. (in Russ)

60. Kadurina T.I., Gorbunova V.N. Connective tissue dysplasia. A guide for doctors. Saint Petersburg: Elbi-SPb 2009; 451–455. (in Russ)

61. Kolekar S., Sandaram P. Bullous lungs: diverse aetiology. Postgrad Med J 2002; 78(925): 689–692. DOI: 10.1136/pmj.78.925.689

62. Wood J.R., Bellamy D., Child A.H., Citron K.M. Pulmonary disease in patients with Marfan syndrome. Thorax 1984; 39: 780–784.

63. Cohen M., Sahn S.A. Bronchiectasis in systemic diseases. Chest 1999; 116(4): 1063–1074.

64. Goryainova A.V., Kashirskaya N.Yu., Semykin S.Yu., Donnikov A.E., Abramov D.D., Zobkova G.Yu. The role of non-differentiated connective tissue dysplasia during cystic fibrosis in children. Materials of the XXV Congress of Children’s Gastroenterologists of Russia and CIS countries “Actual problems of abdominal pathology in children”. Moscow: MEDPRAKTIKA-М 2018; 245–249. (in Russ)


Review

For citations:


Goryainova A.V., Shumilov P.V., Kashirskaya N.Yu., Semykin S.Yu. THE ROLE OF CONNECTIVE TISSUE DYSPLASIA IN CHILDREN’S CYSTIC FIBROSIS. CLINICAL AND GENETIC ASPECTS. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2018;63(5):20-28. (In Russ.) https://doi.org/10.21508/1027-4065-2018-63-5-20-28

Views: 1164


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)