VIRULENCE AND ANTIBIOTIC RESISTANCE OF ISOLATES OF KLEBSIELLA PNEUMONIAE IN NEWBORNS WITH LOCALIZED AND GENERALIZED FORMS OF INFECTION
https://doi.org/10.21508/1027-4065-2018-63-5-139-146
Abstract
Objective. To study the effect of virulence and antibiotic sensitivity of K. pneumoniae on the course and outcome of localized and generalized forms of infection in newborns.
The authors studied 25 samples of K. pneumoniae isolated from the blood (12 isolates) and feces (13 isolates) of the children with various forms of neonatal infection. Group 1 consisted of 12 children with bacteriologically proven neonatal sepsis, K. pneumoniae was isolated of their blood. Group 2 included 13 children with localized bacterial infection in the form of pneumonia, K. pneumoniae was isolated from their feces. The PCR method was used to determine the virulence factors of the isolates of K. pneumoniae-rmpA, aerobactin and colibactin. The sensitivity of K. pneumoniae to antibiotics was determined by the Kirby-Bauer method. The double disk method was used to determine the ability of K. pneumoniae to produce extended-spectrum β-lactamases (ESBL).
Results. In Group 1 the isolates of K. pneumoniae produced ESBL in 8 children out of 12. The bacteria were sensitive to meropenem, amikacin and ciprofloxacin in 4 cases. One child demonstrated resistance to meropenem. The remaining 4 isolates were sensitive to the third-generation cephalosporins protected by aminopenicillins, amikacin, meropenem and ciprofloxacin. The rmpA gene was determined in the K. pneumoniae isolates in 6 children. The “string-test” of these colonies of K. pneumoniae in all cases gave a positive result. The genes of siderophores, aerobactin and colibactin were found in 3 isolates. Aerobactin and colibactin produced only rmpA-bearing strains. 3 isolates (23%) of K. pneumoniae produced ESBL in Group 2. In 8 out of 13 cases there was rmpA–gene and genes of aerobactin and colibactin in 11 and 7 cases accordingly. The “string-test” was positive in 8 cases, and there were only rmpA-positive bacteria. Siderophores were detected both in rmpA-positive and rmpA-negative isolates. The microbes produced BLBR and were rmpA-positive in 2 children. In one case, the isolates had neither the characteristic virulence factors, nor BLBR.
Conclusion. The risk of developing localized and generalized forms of neonatal klebsiella infection is largely determined by microbiological features of the microorganism, its resistance and virulence. We observed clinical variants of the disease caused by K. pneumoniae, which simultaneously had two properties: high aggressiveness and resistance to antibiotic therapy.
About the Authors
Kh. S. KhaertynovRussian Federation
V. A. Anohin
Russian Federation
A. A. Rizvanov
Russian Federation
Yu. N. Davidyuk
Russian Federation
S. V. Khaliullina
Russian Federation
S. A. Lyubin
Russian Federation
F. M. Kazakova
Russian Federation
M. A. Satrutdinov
Russian Federation
M. G. Fattahov
Russian Federation
References
1. Verma P., Berwal P.K., Nagaraj N., Swami S., Jivaji P., Narayan S. Neonatal sepsis: epidemiology, clinical spectrum. Recent antimicrobial agents and their antibiotic susceptibility pattern. Int J Contemp Pediatr 2015; 2: 176–180. DOI: 10.18203/2349-3291.ijcp20150523
2. Camacho-Gonzales A., Spearman P.W., Stoll B.J. Neonatal infectious diseases: evaluation of neonatal sepsis. Pediatr Clin North A 2013; 60: 367–389. DOI: 10.1016/j.pcl.2012.12.003
3. Borghesi A., Stronati M. Superbugs and antibiotics in the newborn. Journal of Pediatric and Neonatal Individualized Medicine 2015; 4(2): e040253. DOI: 10.7363/040253
4. Stoll B.J., Hansen N.I., Fanaroff A.A., Wright L.L., Carlo W.A., Ehrenkranz R.A. et al. Late onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics 2002; 110: 285–291.
5. Dong Y., Speer C.P. Late-onset neonatal sepsis: recent developments. Arch Dis Child Fetal Neonatal Ed 2015; 100(3): F257–263. DOI: 10.1136/archdischild-2014-306213
6. Zea-Vera A., Ochoa T.J. Challenges in the diagnosis and management of neonatal sepsis. J Trop Pediatr 2015; 61: 1–13. DOI: 10.1093/tropej/fmu079
7. Podschun R., Ullmann U. Klebsiella spp. As Nosocomial Pathogens: Epidemiology, Taxonomy, Typing Methods, and Pathogenicity Factors. Clin Microbiol Rev 1998; 4: 11: 589–603.
8. Haller S., Eller C., Hermes J., Kaase M., Steglich M., Radonic A. et al. What caused the outbreak of ESBL-producing Klebsiella pneumoniae in a neonatal intensive care unit, Germany 2009 to 2012? Reconstucting transmission with epidemiological analysis and whole-genome sequencing. BMJ 2015; 5: e007397. DOI: 10.1136/bmjopen-2014-007397
9. Хаертынов Х.С., Анохин В.А., Николаева И.В., Семенова Д.Р., Любин С.А., Агапова И.В. и др. Клебсиеллезный неонатальный сепсис. Медицинский вестник Северного Кавказа 2016; 11(1): 82–86. DOI: 10.14300/mnnc.2016.
10. [Khaertynov Kh.S., Anohin V.A., Nikolaeva I.V., Semenova D.R., Lyubin S.A., Agapova I.V. et al. Neonatal sepsis caused by Klebsiella. Meditsinskij vestnik Severnogo Kavkaza 2016; 11:82–86. DOI: 10.14300/mnnc.2016. 11004 (in Russ)]
11. Broberg C.A., Palacios M., Miller V.L. Klebsiella: a long way to go towards understanding this enigmatic jet-setter. F1000Prime Reports 2014; 6: 64: DOI: 10.12703/P6-64
12. Li B., ZhaoY., Liu C., Zhou D. Molecular pathogenesis of Klebsiella pneumonia. Future Microbiol 2014; 9: 9: 1071–1081. DOI: 10.2217/fmb.14.48
13. Liu Y.C., Cheng D.L., Lin C.L. Klebsiella pneumoniae liver abscess associated with septic endophthalmitis. Arch Intern Med 1986; 146: 1913–1916.
14. Cheng D.L., Liu Y.C., Yen M.Y., Liu C.Y., Wang R.S. Septic metastatic lesions of pyogenic liver abscess. Their association with Klebsiella pneumoniae bacteremia in diabetic patients. Arch Intern Med 1991; 151: 1557–1559.
15. Wang J.H., Liu Y.C., Lee S.S., Yen M.Y., Chen Y.S., Wang J.H. et al. Primary liver abscess due to Klebsiella pneumoniae in Taiwan. Clin Infect Dis 1998; 26: 1434–1438.
16. Shon A.S., Bajwa R.P., Russo T.A. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence 2013; 4: 2: 107–118. DOI: 10.4161/viru.22718
17. Decré D., Verdet C., Emirian A., Le Gourrierec T., Petit J.C., Offenstadt G. et al. Emerging severe and fatal infections due to Klebsiella pneumoniaein two university hospitals in France. J Clin Microbiol 2011; 49: 3012–3014. DOI: 10.1128/JCM.00676-11
18. Bialek-Davenet S., Criscuolo A., Ailloud F., Passet V., Jones L., Delannoy-Vieillard A.S. et al. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerg Infect Dis 2014; 20: 1812–1820. DOI: 10.3201/eid2011.14020622
19. Surgers L., Boyd A., Girard P.M., Arlet G., Decré D. ESBLProducing Strain of Hypervirulent Klebsiella pneumoniae K2, France. Emerging Infectious Diseases 2016; 22(9): 1687–1688. DOI: 10.3201/eid2209.160681
20. Khaertynov Kh.S., Anokhin V.A., Davidyuk Y.N., Nicolaeva I.V., Khalioullina S.V., Semyenova D.R., Alatyrev E.Yu., Skvortsova N.N., Abrahamyan L.G. Case of meningitis in a neonate caused by an extended-spectrum-beta-lactamaseproducing strain of hypervirulent Klebsiella pneumoniae. Frontiers in Microbiology 2017; 8: 1576. DOI: 10.3389/fmicb.2017.01576
21. Alekseev V.V., Alipov A.N., Andreev V.A., Antonov V.G., Aseev M.A., Badikov V.D. et al. Medical laboratory technologies. A.I. Karpishchenko (ed). Moscow: GEHOTАR-Media 2013; 792. (in Russ)
22. Collee J.G., Mackie T.J., McCartney J.E. Practical medical microbiology, 14th edn. New York, Churchill Livingstone, 1996; 978.
Review
For citations:
Khaertynov Kh.S., Anohin V.A., Rizvanov A.A., Davidyuk Yu.N., Khaliullina S.V., Lyubin S.A., Kazakova F.M., Satrutdinov M.A., Fattahov M.G. VIRULENCE AND ANTIBIOTIC RESISTANCE OF ISOLATES OF KLEBSIELLA PNEUMONIAE IN NEWBORNS WITH LOCALIZED AND GENERALIZED FORMS OF INFECTION. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2018;63(5):139-146. (In Russ.) https://doi.org/10.21508/1027-4065-2018-63-5-139-146