Высокопроизводительное секвенирование ДНК для идентификации генетически детерминированных заболеваний в педиатрической практике


https://doi.org/10.21508/1027-4065-2019-64-1-103-109

Полный текст:


Аннотация

Технология секвенирования нового поколения (NGS) за последние годы стала важным диагностическим инструментом в педиатрии. В генетической педиатрической  клинике проанализированы результаты применения полноэкзомного  секвенирования у 42 детей с задержкой психического, физического развития и/или аномалиями различных органов и систем. У 19 больных был установлен  первичный генетический  диагноз, и, таким образом, эффективность экзомного секвенирования составила 45%, что несколько выше эффективности  NGS,  приводимой в источниках литературы. В статье представлены клинические наблюдения случаев первичного, возможного,  двойного диагноза, прогностического вторичного варианта, примеры ошибок в интерпретации данных секвенирования. Подчеркивается  важность исследования выявленных мутаций в семьях не только у родителей, но и других родственников пациента. В частности, в случае идентификации Х-сцепленных генетических вариантов обосновывается необходимость их анализа в трех поколениях семьи.


Об авторах

В. Ю. Воинова
Научно-исследовательский клинический институт педиатрии им. акад. Ю.Е. Вельтищева РНИМУ им. Н.И. Пирогова Минздрава России
Россия

Воинова  Виктория  Юрьевна  – доктор медицинских наук, главный научный сотрудник отдела клинической генетики.

125412 Москва,  ул. Талдомская, д.2.



Е. А. Николаева
Научно-исследовательский клинический институт педиатрии им. акад. Ю.Е. Вельтищева РНИМУ им. Н.И. Пирогова Минздрава России
Россия

Николаева Екатерина Александровна – доктор медицинских наук,  руководитель отдела клинической генетики.

125412 Москва,  ул. Талдомская, д.2.



Н. В. Щербакова
Научно-исследовательский клинический институт педиатрии им. акад. Ю.Е. Вельтищева РНИМУ им. Н.И. Пирогова Минздрава России
Россия

Щербакова Наталья  Владимировна – заведующая лабораторией  молекулярной и биохимической диагностики.

125412 Москва,  ул. Талдомская, д.2.



М. И. Яблонская
Научно-исследовательский клинический институт педиатрии им. акад. Ю.Е. Вельтищева РНИМУ им. Н.И. Пирогова Минздрава России
Россия

Яблонская Мария Игоревна – кандидат медицинских наук, старший научный сотрудник отдела клинической генетики.

125412 Москва,  ул. Талдомская, д.2.



Список литературы

1. McCandless S.E., Brunger J.W., Cassidy S.B. The burden of genetic disease on inpatient care in a children’s hospital. Am J Hum Genet 2004; 74(1): 121–127.

2. Robin N.H. It does matter: The importance of making the diagnosis of a genetic syndrome. Curr Opin Pediatr 2006; 18(6): 595–597. DOI: 10.1097/01.mop.0000247536.78273.78

3. Miller D.T., Adam M.P., Aradhya S., Biesecker L.G., Brothman A.R., Carter N.P., Church D.M. et al. Consensus statement: Chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 2010; 86(5): 749–764. DOI: 10.1016/j.ajhg.2010.04.006

4. Stavropoulos D.J., Merico D., Jobling R., Bowdin S., Monfared N., Thiruvahindrapuram B., Nalpathamkalam T. et al. Whole-genome sequencing expands diagnostic utility and improves clinical management in paediatric medicine. NPJ Genom Med 2016; 1: 15012. DOI: 10.1038/npjgenmed.2015.12

5. Thiffault I., Lantos J. The challenge of analyzing the results of next-generation sequencing in children. Pediatrics 2016; 137(Suppl 1): S3–7. DOI: 10.1542/peds.2015-3731C

6. Шагам Л.И., Воинова В.Ю. Возможности и ограничения высокопроизводительного секвенирования в диагностике моногенных заболеваний. Российский вестник перинатологии и педиатрии 2016; 61(2): 105–109. DOI: 10.21508/1027-4065-2016-61-2-105-109

7. Bowdin S., Gilbert A., Bedoukian E., Carew C., Adam M.P., Belmont J., Bernhardt B. et al. Recommendations for the integration of genomics into clinical practice. Genet Med 2016; 18(11): 1075–1084. DOI: 10.1038/gim.2016.17

8. UK10K Consortium, Walter K., Min J.L., Huang J., Crooks L., Memari Y., McCarthy S. et al. The UK10K project identifies rare variants in health and disease. Nature 2015; 526(7571): 82–90. DOI: 10.1038/nature14962

9. Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W. et al.; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet Med 2015; 17(5): 405–424. DOI: 10.1038/gim.2015.30

10. Joshi C., Kolbe D.L., Mansilla M.A., Mason S.O., Smith R.J., Campbell C.A. Reducing the cost of the diagnostic odyssey in early onset epileptic encephalopathies. Biomed Res Int 2016; 2016: 6421039. DOI: 10.1155/2016/6421039.

11. Warman Chardon J., Beaulieu C., Hartley T., Boycott K.M., Dyment D.A. Axons to exons: The molecular diagnosis of rare neurological diseases by next-generation sequencing. Curr Neurol Neurosci Rep 2015; 15(9): 64. DOI: 10.1007/s11910-015-0584-7.

12. Kernohan K.D., Dyment D.A., Pupavac M., Cramer Z., McBride A., Bernard G., Straub I. et al. Matchmaking facilitates the diagnosis of an autosomal-recessive mitochondrial disease caused by biallelic mutation of the tRNA isopentenyltransferase (TRIT1) gene. Hum Mutat 2017; 38(5): 511–516. DOI: 10.1002/humu.23196.

13. Matchmaker Exchange. http://www.matchmakerexchange.org/

14. Undiagnosed Disease Network. https://undiagnosed.hms.harvard.edu/

15. Wenger A.M., Guturu H., Bernstein J.A., Bejerano G. Systematic reanalysis of clinical exome data yields additional diagnoses: Implications for providers. Genet Med 2017; 19(2): 209–214. DOI: 10.1038/gim.2016.88.

16. Balci T.B., Hartley T., Xi Y., Beaulieu C.L., Bernier F.P., Dupuis L., Horvath G.A. et al. Debunking Occam’s razor: Diagnosing multiple genetic diseases in families by whole-exome sequencing. Clin Genet 2017; 92(3): 281–289. DOI: 10.1111/cge.12987

17. Kalia S.S., Adelman K., Bale S.J., Chung W.K., Eng C., Evans J.P., Herman G.E. et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med 2017; 19(2): 249–255. DOI: 10.1038/gim.2016.190

18. Shahmirzadi L., Chao E.C., Palmaer E., Parra M.C., Tang S., Gonzalez K.D. Patient decisions for disclosure of secondary findings among the first 200 individuals undergoing clinical diagnostic exome sequencing. Genet Med 2014; 16(5): 395–399. DOI: 10.1038/gim.2013.153

19. Fowler S.A., Saunders C.J., Hoffman M.A. Variation among Consent Forms for Clinical Whole Exome Sequencing. J Genet Couns 2018; 27(1): 104–114. DOI: 10.1007/s10897-017-0127-2

20. Roche M.I., Berg J.S. Incidental Findings with Genomic Testing: Implications for Genetic Counseling Practice. Current Genetic Medicine Reports 2015; 3(4): 166–176. DOI: 10.1007/s40142-015-0075-9

21. Schwarz U.I., Gulilat M., Kim R.B. The Role of Next-Generation Sequencing in Pharmacogenetics and Pharmacogenomics. Cold Spring Harb Perspect Med 2018; pii: a033027. DOI: 10.1101/cshperspect.a033027

22. PharmGKB. Available at http://www.pharmgkb.org.

23. https://www.fda.gov/Drugs/ScienceResearch/ucm572698.htm

24. Cohn I., Paton T.A., Marshall C.R., Basran R., Stavropoulos D.J., Ray P.N., Monfared N. et al. Genome sequencing as a platform for pharmacogenetic information: A cohort study in children. NPJ Genomic Medicine 2017; 2: 19. DOI: 10.1038/s41525-017-0021-8

25. Yohe S., Thyagarajan B. Review of Clinical Next-Generation Sequencing. Arch Pathol Lab Med 2017; 141(11): 1544–1557. DOI: 10.5858/arpa.2016-0501-RA

26. Bell C.J., Dinwiddie D.L., Miller N.A., Hateley S.L., Ganusova E.E., Mudge J., Langley R.J. et al. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci Transl Med 2011; 3(65): 65ra4. DOI: 10.1126/scitranslmed.3001756

27. Cassa C.A., Tong M.Y., Jordan D.M. Large numbers of genetic variants considered to be pathogenic are common in asymptomatic individuals. Hum Mutat 2013; 34(9): 1216–1220. DOI: 10.1002/humu.22375

28. Gray V.E., Kukurba K.R., Kumar S. Performance of computational tools in evaluating the functional impact of laboratoryinduced amino acid mutations. Bioinformatics 2012; 28(16): 2093–2096. DOI: 10.1093/bioinformatics/bts336

29. Kankirawatana P., Leonard H., Ellaway C., Scurlock J., Mansour A., Makris C.M., Dure L.S. et al. Early progressive encephalopathy in boys and MECP2 mutations. Neurology 2006; 67(1): 164–166. DOI: 10.1212/01.wnl.0000223318.28938.45


Дополнительные файлы

Для цитирования: Воинова В.Ю., Николаева Е.А., Щербакова Н.В., Яблонская М.И. Высокопроизводительное секвенирование ДНК для идентификации генетически детерминированных заболеваний в педиатрической практике. Российский вестник перинатологии и педиатрии. 2019;64(1):103-109. https://doi.org/10.21508/1027-4065-2019-64-1-103-109

For citation: Voinova V.Y., Nikolaeva E.A., Shсherbakova N.V., Yuablonskaya M.I. High-performance DNA sequencing to identify genetically determined diseases in pediatric practice. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2019;64(1):103-109. (In Russ.) https://doi.org/10.21508/1027-4065-2019-64-1-103-109

Просмотров: 103

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)