Preview

Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics)

Advanced search

Approaches to the treatment of bacterial infections of the respiratory tract based on current data of the microbiome

https://doi.org/10.21508/1027-4065-2019-64-1-125-129

Abstract

Respiratory infections are mainly caused by viruses or bacteria that often interact. In the upper respiratory tract there is a wide range of commensals and potential pathogenic bacteria that, together with other bacteria, viruses and fungi, form complex ecological networks known collectively as “the microbiome”. It is assumed that this community is constantly exposed to synergistic and competitive interspecific interactions. The microbiome of the respiratory tract is a factor of respiratory health, which changes (respiratory viral infections, inappropriate use of antibiotics) can lead to bacterial complications and the spread of respiratory tract infections in. In the light of current guidelines for limiting the use of systemic antibiotics in case of uncomplicated acute respiratory tract infections, a real alternative is the use of topical antimicrobial agents, for example, thiamphenicol glycinate acetylcysteinate. The article presents the results of the use of the drug in respiratory infections of the upper and lower respiratory tract.

About the Authors

N. G. Kolosova
Sechenov First Moscow State Medical University (Sechenovsky University)
Russian Federation
Moscow.


N. A. Geppe
Sechenov First Moscow State Medical University (Sechenovsky University)
Russian Federation
Moscow.


I. A. Dronov
Sechenov First Moscow State Medical University (Sechenovsky University)
Russian Federation
Moscow.


References

1. Bosch A., Biesbroek G., Trzcinski K., Sanders E.M., Bogaert D. Viral and Bacterial Interactions in the Upper Respiratory Tract. PLoS Pathog 2013; 9(1): e1003057. DOI: 10.1371/journal.ppat.1003057

2. Murphy T., Bakaletz L., Smeesters P. Microbial interactions in the respiratory tract. Pediatr Infect Dis J 2009; 28(10): S121–S126. DOI: 10.1097/INF.0b013e3181b6d7ec

3. De Steenhuijsen P.W.A., Sanders E.A., Bogaert D. The role of the local microbial ecosystem in respiratory health and disease. Phil Trans R Soc 2015; B370: 20140294. DOI: 10.1098/rstb.2014.0294

4. Tracy M., Cogen J., Hoffman L.R. The Pediatric Microbiome and the Lung. Curr Opin Pediatr 2015; 27(3): 348–355. DOI: 10.1097/MOP.0000000000000212

5. McCullers J.A. Insights into the interaction between influenza virus and pneumococcus. Clin Microbiol Rev 2006; 19: 571–582. DOI: 10.1128/CMR.00058-05

6. Wang J.H., Kwon H.J., Jang Y.J. Rhinovirus enhances various bacterial adhesions to nasal epithelial cells simultaneously. Laryngoscope 2009; 119(7): 1406–1411. DOI: 10.1002/lary.20498

7. Verkaik N.J., Nguyen D.T., de Vogel C.P., Moll H.A., Verbrugh H.A., Jaddoe V.W. et al. Streptococcus pneumoniae exposure is associated with human metapneumovirus seroconversion and increased susceptibility to in vitro HMPV infection. Clin Microbiol Infect 2011; 17(12): 1840–1844. DOI: 10.1111/j.1469-0691.2011.03480.x

8. Sajjan U.S., Jia Y., Newcomb D.C., Bentley J.K., Lukacs N.W., LiPuma J.J. et al. H. influenzae potentiates airway epithelial cell responses to rhinovirus by increasing ICAM-1 and TLR3 expression. FASEB J 2006; 20(12): 2121–2123. DOI: 10.1096/fj.06-5806fje

9. Yokota S., Okabayashi T., Yoto Y., Hori T., Tsutsumi H., Fujii N. Fosfomycin suppresses RS-virus-induced streptococcus pneumoniae and haemophilus influenzae adhesion to respiratory epithelial cells via the platelet-activating factor receptor. FEMS Microbiol Lett 2010; 310(1): 84–90. DOI: 10.1111/j.1574-6968.2010.02049.x

10. Goulding J., Godlee A., Vekaria S., Hilty M., Snelgrove R., Hussell T. Lowering the threshold of lung innate immune cell activation alters susceptibility to secondary bacterial superinfection. J Infect Dis 2011; 204(7): 1086–1094. DOI: 10.1093/infdis/jir467

11. Teo S.M., Mok D., Pham K., Kusel M., Serralha M., Troy N. et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe 2015; 17: 704–715. DOI: 10.1016/j.chom.2015.03.008

12. Uchaikin V.F., Kharlamov F., Shamsheva O.V., Poleshko I.V. Infectious diseases. Atlas guide. Moscow: GEOTAR Media, 2010; 384 (in Russ)

13. Manual of Childhood Infections. The Blue Book. Fourth Edition Oxford, 2016; 1032.

14. Belevskiy A.S., Knyazheskaya N.P. Thiamphenicol glycinate acetylcysteinate: some aspects of the application in acute and chronic pulmonary diseases. Prakticheskaya pul’monologiya 2017; 3: 122–126. (in Russ)

15. Instructions for medical use of Fluimucil-antibiotic IT medication, registration number: P N012977/01-090609. https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=cb2ce15f-58e5-4f22-b534-8bfcfd27a0b9&t=74d849bf-34e4-4fb5-9953-25fd328f0fb5. Accessed 2017.12.15 (in Russ)

16. Chuchalin A. G., Soodaeva S. K., Avdeev S. N. Fluimucil: mechanisms of action and significance in the treatment of respiratory diseases. Moscow: publishing house of Zambon Group S.P.A., 2004; 53. (in Russ)

17. Drago L., De Vecchi E., Fassina M.C. Comparative in vitro activity of thiamphenicol-glycinate and thiamphenicol-glycinate-acetylcysteinate and other antimicrobials against respiratory pathogens. Arzneimittelforschung 2001; 51(4): 315–324.

18. Geppe N.A. Malyavina U.S., Dronov I.A., Titova, E.L. New technology in the treatment of rhinosinusitis in children. Doctor. Ru 2010; 1: 7–10. (in Russ)

19. Karpova E.P., Tulupov D.A. On the possibilities of nebulizer therapy in the treatment of acute rhinosinusitis in children. Rossiyskaya otorinolaringologiya 2013; 4: 7–10. (in Russ)

20. Grassi C., De Benedetto F. Recent clinical evidence of the efficacy and safety of thiamphenicol glycinate acetylcysteinate and thiamphenicol glycinate. J Chemother 2002; 14(3): 279–284.

21. Ovcharenko S.I., Kapustina V.A., Son E.A. Successful application of the inhalation form of fluimucil antibiotic it in the treatment of infectious and inflammatory diseases of the respiratory system. Farmateka 2010; 11: 42–45. (in Russ)

22. Todisco T., Eslami A., Baglioni S., Todisco C. An open, comparative pilot study of thiamphenicol glycinate hydrochloride vs clarithromycin in the treatment of acute lower respiratory tract infections due to Chlamydia pneumonia. J Chemother 2002; 14(3): 265–271.

23. Geppe N.A., Kolosova N.D., Dronov I.A. Experience in the use of thiamphenicol glycinate acetylcysteine in acute bronchitis in children. Pul’monologiya 2017; 27(4): 496–501. (in Russ)

24. Serra A. Schito G.C., Nicoletti G., Fadda G. A therapeutic approach in the treatment of infections of the upper airways: thiamphenicol glycinate acetylcysteinate in sequential treatment (systemic-inhalatory route). Int J Immunopathol Pharmacol 2007; 20(3): 607–617. DOI: 10.1177/039463200702000319


Review

For citations:


Kolosova N.G., Geppe N.A., Dronov I.A. Approaches to the treatment of bacterial infections of the respiratory tract based on current data of the microbiome. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2019;64(1):125-129. (In Russ.) https://doi.org/10.21508/1027-4065-2019-64-1-125-129

Views: 1557


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)