Milk fat globule membrane: Innovation discoveries just for today
Abstract
The previous requirements for baby foods are reconsidered with regards to the novel results of an investigation of breastmilk composition and properties. The need to switch babies over to formula feeding requires that the foods should be better manufactured and brought much closer to the milk of a breastfeeding mother. The possibility of optimizing the fat fraction of milk formulas for healthy babies is of particular interest. The adaptation of the fat fraction of milk formulas was previously aimed at fortifying the foods with essential polyunsaturated fatty acids, by removing butterfat completely and adding to the formula a complex of vegetable oils that are sources of arachidonic and docosahexaenic acids. Special attention is now drawn to the so-called minor components of the fat fraction of breast milk, its fat globules in particular, the core of which is present as hydrophobic triglycerides comprising 95-98% of the globules. The remaining 2-5% of the globules is the lipid-protein membrane that also contains small amounts of vitamins and enzymes. This membrane is named milk fat globule membrane (MFGM); its components are indispensable for the adequate development of a child. To fortify milk formulas with complex lipids as a MFGM component for babies during the first year of life is a promising area for the further improvement of the manufacture of infant foods.
Keywords
About the Authors
I. N. ZakharovaRussian Federation
Yu. A. Dmitrieva
Russian Federation
E. A. Gordeeva
Russian Federation
References
1. Захарова И.Н., Дмитриева Ю.А., Суркова Е.Н. Отдаленные последствия неправильного вскармливания детей. Вопр практич педиатр 2010; 5: 4: 52—57. (Zakha-rova I.N., Dmitrieva Yu.A., Surkova E.N. Remote consequences of the wrong feeding of children. Vopr praktich pediatr2010; 5:4: 52-57.)
2. Питание детей первого года жизни. Часть 1. Естественное вскармливание. Под ред. В.А. Филина, Т.Г. Верещагиной. М 2003; 80. (Feeding of children of the first year of life. Part 1. Natural feeding. V.A. Filin, T.G. Vereshhagina (eds). M 2003; 80.)
3. Giovannini M., Riva E., Agostoni C. Fatty acids in pediatric nutrition. Pediatr Clin North Am 1995; 42: 861-77.
4. Нетребенко O.K. К вопросу о роли длинноцепочечных полиненасыщенных жирных кислот в питании детей грудного возраста. Педиатрия 2005; 4: 66—70. (Netreben-ko O.K. To a question of a role the long-chaine polynonsat-urated fatty acids in food of children of the first year of life. Pediatriya2005; 4: 66-70.)
5. Киселева Е.С. Длинноцепочечные полиненасыщенные жирные кислоты в питании детей первого года жизни. Педиатрия 2008; 87: 2: 75-81. (Kiseleva E.S. Long-chaine polynonsaturated fatty acids in food of children of the first year of life. Pediatriya 2008; 87: 2: 75-81.)
6. Uauy R., Birch E., Birch D. et al. Visual and brain function measurements in studies of n3 fatty acid requirements of infant. J Pediatr 1992; 120: 168-180.
7. Farquharson J., Jamieson E.C., Abbasi KA. et al. Effect of diet on the fatty acid composition of the major phospholipids of infant cerebral cortex. Arch Dis Child 1995; 72: 198-203.
8. Lauritzen L., Hansen H., Jorgensen M. et al. The essentiality of long chain n-3 fatty acids in relation to development and function ofthe brain and retina. Prog Lipid Res 2001; 40:1—94.
9. Pleisler S.J., Anderson R.E. Chemistry and metabolism of lip-ids in vertebrate retina. Prog Lipid Res 1983; 22: 79-131.
10. Field C.J., Clandinin M.T., Van Aerde J.E. Polyunsaturated fatty acids and T-cell function: Implications for the neonate. Lipids 2001; 36: 1025-1032.
11. Захарова И.Н., Суркова Е.Н. Роль полиненасыщенных жирных кислот в формировании здоровья детей. Педиатрия 2009; 88: 6: 84-91. (Zakharoval.N., SurkovaE.N. Role of polynonsaturated fatty acids in formation of health of children. Pediatriya2009; 88: 6: 84-91).
12. Brenna J.T., VaraminiВ., Jensen R.G. et al. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am J Clin Nutr 2007; 85: 1457-1464.
13. Koletzko В., Thiel I., Abiodun P.O. The fatty acid composition of human milk in Europe and Affrica. JPediatr 1992; 120: S62-S70.
14. Salem N., WegherB.,MenaP., UauyR. Arachidonic and docosahexaenoic acids are biosynthesized from their 18-carbon precursors in human infants. Proc Natl Acad Sci USA 1996; 93: 49-54.
15. Willatts P., Forsyth J.S., Dimodugno M.K. et al. Effect of long-chain polyunsaturated fatty acids infant formula on problem solving at 10 months of age. Lancet 1998; 352: 688-691.
16. Rayon J., Carver J., WybleL. etal. The fatty acids composition of maternal diet affects lung prostaglandin E2 level and survival from group В Streptococcal sepsis in neonatal rat pups. J Nutr 1997; 127: 10: 1989-1992.
17. Birch E.E., Garfield S., Hoffman D.R. et al. A randomised controlled trial of early dietary supply of long-chain polyunsaturated fatty acids and mental development in term infants. Dev Ved Child Neurol 2000; 42: 174-181.
18. Hoffman D.R., Birch E.E., Birch D.G. et al. Impact of early dietary intake and blood lipid composition of long-chain polyunsaturated fatty acids on later visual development. J Pediatr Gastroenterol Nutr 2000; 31: 540-553.
19. Simmer K., Patole S.K., Rao S.C. Long-chain polyunsaturated fatty acid supplementation in infants born at term. Cochrane Database Syst Rev 2008; 1: CD000376.
20. Simmer K., Patole S.K., Rao S.C. Long-chain polyunsaturated fatty acid supplementation in infants born at term. Cochrane Database Syst Rev 2011; 12: CD000376.
21. Mather I.H, Keenan T.W. Origin and secretion of milk lipids. J Mammary Gland Biol Neoplasia 1998; 3: 3: 259-273.
22. Zeisel S.H., Char D., Sheard N.F. Choline, phosphatidylcho-line and sphingomyelin in human and bovine milk and infant formulas. J Nutr 1986; 116: 1: 50-58.
23. Pan X.L., Izumi T. Variation of the ganglioside compositions of human milk, cow's milk and infant formulas. Early Human Development 2000; 57: 1: 25-31.
24. HarzerG., HaugM., Dieterich I., Gentner P.R. Changing patterns of human milk lipids in the course of the lactation and during the day. Am J Clin Nutr 1983; 37: 4: 612-621.
25. Wijendran V., Huang M.C., Diau G.Y. et al. Efficacy of dietary arachidonic acid provided as triglyceride or phospholipid as substrates for brain arachidonate accretion in baboon neo-nates. Pediatr Res 2002; 51: 265-272.
26. Brody B.A., Kinney H.C., Kloman AS., Gilles F.H Sequence of central nervous system myelination in human infancy.
27. I. An autopsy study of myelination. J Neuropathol Exp Neurol 1987; 46: 3:283-301.
28. Bettger W.J., DiMichelle-Ranalli E., Dillingham В., Blacka-dar C.B. Nervonic acid is transferred from the maternal diet to milk and tissues of suckling rat pups. J Nutr Biochem 2003; 14: 3: 160-165.
29. Zeisel S.H., Mar M.K, Zhou Z, da Costa K.A. Pregnancy and lactation are associated with diminished concentrations of choline and its metabolites in rat liver. J Nutr 1995; 125: 12: 3049-3054.
30. Zeisel S.H. Choline: an essential nutrient for humans. Nutrition 2000; 16: 7-8: 669-671.
31. Holmes H.C., SnodgrassG.J., lies R.A. Changes in the choline content of human breast milk in the first 3 weeks after birth. Eur JPediatr2000; 159: 3: 198-204.
32. Wymann M.P., Schneiter R. Lipid signalling in disease. Nat Rev Mol Cell Biol 2008; 9: 2: 162-176.
33. McJarrow P., Schnell N., Jumpsen J., Clandinin T. Influence of dietary gangliosides on neonatal brain development. Nutr Rev 2009; 67: 8: 451-463.
34. Ефременко В.И., Нарбутович НИ., Ходова Н.Ф. и др. Ганглиозиды — рецепторы бактериальных токсинов и других биологически активных веществ. Аннотированный библиографический указатель отечественной и зарубежной литературы 1976—1986 гг. Волгоград, 1988; 202. (Efremenko V.I., Narbutovich N.I., Khodova N.F. et al. Gangliosids — receptors of bacterial toxins and other biologically active agents. The annotated bibliographic index of russian and foreign literature 1976—1986 gg. Volgograd, 1988; 202.)
35. Украинцев С.Е., McJarrow P. Питание и развитие мозга: современные представления и взгляд в будущее. Педиатрия 2012; 91: 1: 102-106. (Ukraintsev S.E., McJarrow P. Food and development of a brain: modern representations and prospection. Pediatriya2012; 91: 1: 102-106.)
36. Gurnida D.A., Rowan A.M., Idjradinata P. et al. Association of complex lipids containing gangliosides with cognitive development of 6-month-old infants. Early Human Development 2012; 88: 8: 595-601.
37. McJarrow P., Schnell N., Jumpsen J., Clandinin M.T. Influence of dietary gangliosides on neonatal brain development. Nutr Rev 2009; 67: 451-463.
38. Owen C.G., Whincup P.H., OdokiK., Cook D.G. Infant feeding and blood cholesterol: a study in adolescents and systematic review. Pediatrics 2002; 110: 597-608.
39. Wu T.C., Huang I.E., Chen Y.C. et al. Differences in serum biochemistry between breast-fed and formula-fed infants. J Chin MedAssoc 2011; 74: 11: 511-515.
40. OwenC.G., Whincup PH., Kaye S.J. etal. Does initial breastfeeding lead to lower blood cholesterol in adult life? A quantitative review ofthe evidence. Am J Clin Nutr 2008; 88: 2: 305-314.
Review
For citations:
Zakharova I.N., Dmitrieva Yu.A., Gordeeva E.A. Milk fat globule membrane: Innovation discoveries just for today. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2015;60(6):15-21. (In Russ.)