Preview

Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics)

Advanced search

Amoxicillin in the treatment of acute respiratory infections in children: a dialogue between a microbiologist and a clinical pharmacologist

https://doi.org/10.21508/1027-4065-2020-65-3-169-176

Abstract

The article presents a modern view of amoxicillin in the treatment of acute respiratory infections in children from point of view of a microbiologist and clinical pharmacologist. Modern microbiological methods have changed the idea of the microbiota of the respiratory tract, however, the etiology of acute bacterial infections of the respiratory tract has not undergone significant changes – Streptococcus pneumoniae and Haemophilus influenzae are still the most common pathogens. Amoxicillin remains the drug of choice for most respiratory infections of bacterial etiology. Inhibitor-protected aminopenicillins (amoxicillin/clavulanate etc.) do not have advantages over amoxicillin in most cases of acute respiratory tract infections, but increase the risk of adverse events. Current data on macrolides, which are widely used in clinical practice, indicate the need to limit their use in acute infections of the respiratory tract due to the increase in resistance of S. pneumoniae and the absence of clinically significant activity against H. influenza. Current information on the resistance of S. pneumoniae and H. influenzae, as well as available data on the pharmacokinetics of amoxicillin, require a review of dosing approaches. The daily dose of amoxicillin in children with acute respiratory infections should not be less than 45–60 mg/kg, and in many cases (acute otitis media, infections caused by H. influenzae or penicillin-resistant S. pneumoniae strains), more than 90 mg/kg/day is required. Amoxicillin has a wide therapeutic range, and therefore the use of high doses of the drug is not associated with a decrease in the safety of therapy.

About the Authors

S. V. Sidorenko
Pediatric Research and Clinical Center for Infectious Diseases
Russian Federation


I. A. Dronov
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation


References

1. Rospotrebnadzor. Statistical outputs. rospotrebnadzor.ru/activities/statistical-materials. The link is active on 21.02.2020. (in Russ.)

2. Strategy and tactics of rational use of antimicrobials in outpatient practice. Eurasian clinical guidelines. Мoscow: Pre100print Publ.; 2016, 144 p. (in Russ.)

3. Troeger C., Blacker B., Khalil I.A., Rao P.C., Cao J., Zimsen S.R.M. et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis 2018; 18(11): 1191–210. DOI: 10.1016/S1473-3099(18)30310-4

4. Chua K.-P., Fischer M.A., Linder J.A. Appropriateness of outpatient antibiotic prescribing among privately insured US patients: ICD-10-CM based cross sectional study. BMJ 2019; 364: k5092. DOI: 10.1136/bmj.k5092

5. Dibner J.J., Richards J.D. Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci 2005; 84(4): 634–643. DOI: 10.1093/ps/84.4.634

6. Cho I., Yamanishi S., Cox L., Methe B.A., Zavadil J., Li K. et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 2012; 488(7413): 621–626. DOI: 10.1038/nature11400

7. Baron R., Taye M., Besseling-van der Vaart I., Ujčič-Voortman J., Szajewska H. et al. The relationship of prenatal and infant antibiotic exposure with childhood overweight and obesity: a systematic review. J Dev Orig Health Dis 2019; 1–15. DOI: 10.1017/S2040174419000722

8. Toivonen L., Hasegawa K., Waris M., Ajami N.J., Petrosino J.F., Camargo C.A. et al. Early nasal microbiota and acute respiratory infections during the first years of life. Thorax 2019; 74(6): 592–599. DOI: 10.1136/thoraxjnl-2018-212629

9. Biesbroek G., Tsivtsivadze E., Sanders E.A., Montijn R., Veenhoven R.H., Keijser B.J. et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Am J Respir Crit Care Med 2014; 190(11): 1283–1292. DOI: 10.1164/rccm.201407-1240OC

10. Vissing N.H., Chawes B.L., Bisgaard H. Increased risk of pneumonia and bronchiolitis after bacterial colonization of the airways as neonates. Am J Respir Crit Care Med 2013; 188(10): 1246–1252. DOI: 10.1164/rccm.201302-0215OC

11. Ari O., Karabudak S., Kalcioglu M.T., Gunduz A.Y., Durmaz R. The bacteriome of otitis media with effusion: Does it originate from the adenoid? Int J Pediatr Otorhinolaryngol 2019; 126: 109624. DOI: 10.1016/j.ijporl.2019.109624

12. Jain S., Williams D.J., Arnold S.R., Ampofo K., Bramley A.M., Reed C. et al. Community-acquired pneumonia requiring hospitalization among U.S. children. N Engl J Med 2015; 372(9): 835–845. DOI: 10.1056/NEJMoa1405870

13. Sawada S., Okutani F., Kobayashi T. Comprehensive Detection of Respiratory Bacterial and Viral Pathogens in the Middle Ear Fluid and Nasopharynx of Pediatric Patients With Acute Otitis Media. Pediatr Infect Dis J 2019; 38(12): 1199–1203. DOI: 10.1097/INF.0000000000002486

14. Dagan R., Leibovitz E., Fliss D.M., Leiberman A., Jacobs M.R., Craig W. et al. Bacteriologic efficacies of oral azithromycin and oral cefaclor in treatment of acute otitis media in infants and young children. Antimicrob Agents Chemother 2000; 44(1): 43–50. DOI: 10.1128/aac.44.1.43-50.2000

15. Dagan R., Johnson C.E., McLinn S., Abughali N., Feris J., Leibovitz E. et al. Bacteriologic and clinical efficacy of amoxicillin/ clavulanate vs. azithromycin in acute otitis media. Pediatr Infect Dis J 2000; 19(2): 95–104. DOI: 10.1097/00006454-200002000-00002

16. European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 10.0, valid from 2020-01-01.http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_10.0_Breakpoint_Tables.pdf. The link is active on 21.02.2020.

17. Bignardi G.E. Risk factors for Clostridium difficile infection. J Hosp Infect 1998; 40(1): 1–15. DOI: 10.1016/s0195-6701(98)90019-6

18. Beaugerie L., Flahault A., Barbut F., Atlan P., Lalande V., Cousin P. et al. Antibiotic-associated diarrhoea and Clostridium difficile in the community. Aliment Pharmacol Ther 2003; 17(7): 905–912. DOI: 10.1046/j.1365-2036.2003.01531.x

19. Huttner A., Bielicki J., Clements M.N., Frimodt-Møller N., Muller A.E., Paccaud J.-P. et al. Oral amoxicillin and amoxicillin- clavulanate: properties, indications, and usage. Clin Microbiol Infect 2019; DOI: 10.1016/j.cmi.2019.11.028

20. Torumkuney D., Mayanskiy N., Edelstein M., Sidorenko S., Kozhevin R., Morrissey I. Results from the Survey of Antibiotic Resistance (SOAR) 2014–16 in Russia. J Antimicrob Chemother 2018; 73(suppl_5): v14-v21. DOI: 10.1093/jac/dky065

21. de Velde F., de Winter B.C., Koch B.C., van Gelder T., Mouton J.W., COMBACTE-NET consortium Non-linear absorption pharmacokinetics of amoxicillin: consequences for dosing regimens and clinical breakpoints. J Antimicrob Chemother 2016; 71(10): 2909–2917. DOI: 10.1093/jac/dkw226

22. Berni E., Scott L.A., Jenkins-Jones S., De Voogd H., Rocha M.S., Butler C.C. et al. Non-Response to Antibiotic Treatment in Adolescents for Four Common Infections in UK Primary Care 1991–2012: A Retrospective, Longitudinal Study. Antibiotics (Basel) 2016; 5(3). DOI: 10.3390/antibiotics5030025

23. Geppe N.A., Malakhov A.B., Kondyurina E.G., Dronov I.A. Rational antibacterial therapy for respiratory tract infections in children in the aspect of preventing antimicrobial resistance. Voprosy prakticheskoi pediatrii 2019; 14(3): 73–80. (in Russ.) DOI: 10.20953/1817-7646-2019-3-73-80

24. Swanson-Biearman B., Dean B.S., Lopez G., Krenzelok E.P. The effects of penicillin and cephalosporin ingestions in children less than six years of age. Vet Hum Toxicol 1988; 30(1): 66–67.

25. Jiben R. An introduction to pharmaceutical sciences production, chemistry, techniques and technology. Cambridge: Woodhead Pub, 2012; 239.

26. Howie V.M., Ploussard J.H., Sloyer J. Comparison of ampicillin and amoxicillin in the treatment of otitis media in children. J Infect Dis 1974; 129(Suppl): S181–184. DOI: 10.1093/infdis/129.supplement_2.s181

27. Scragg J.N. Further experience with amoxycillin in typhoid fever in children. Br Med J 1976; 2(6043): 1031–1033. DOI: 10.1136/bmj.2.6043.1031

28. Giebink G.S., Canafax D.M., Kempthorne J. Antimicrobial treatment of acute otitis media. J Pediatr 1991; 119(3): 495–500. DOI: 10.1016/s0022-3476(05)82074-8

29. Nelson J.D., Ginsburg C.M., Mcleland O., Clahsen J., Culbertson M.C.Jr., Carder H. Concentrations of antimicrobial agents in middle ear fluid, saliva and tears. Int J Pediatr Otorhinolaryngol 1981; 3(4): 327–334. DOI: 10.1016/0165-5876(81)90057-4

30. Bluestone C.D. Management of otitis media in infants and children: current role of old and new antimicrobial agents. Pediatr Infect Dis J 1988; 7(11 Suppl): S129-36. DOI: 10.1097/00006454-198811001-00002

31. Friedland I.R., McCracken G.H.Jr. Management of infections caused by antibiotic-resistant Streptococcus pneumoniae. N Engl J Med 1994; 331(6): 377–382. DOI: 10.1056/NEJM199408113310607

32. Dowell S.F., Butler J.C., Giebink G.S., Jacobs M.R., Jernigan D., Musher D.M. et al. Acute otitis media: management and surveillance in an era of pneumococcal resistance--a report from the Drug-resistant Streptococcus pneumoniae Therapeutic Working Group. Pediatr Infect Dis J 1999; 18(1): 1–9.

33. Harrison C.J., Welch D.F. Middle ear effusion amoxicillin concentrations in acute otitis media. Pediatr Infect Dis J 1998; 17(7): 657–658. DOI: 10.1097/00006454-199807000-00019

34. Abgueguen P., Azoulay-Dupuis E., Noel V., Moine P., Rieux V., Fantin B., Bedos J.P. Amoxicillin is effective against penicillin- resistant Streptococcus pneumonia strains in a mouse pneumonia model simulating human pharmacokinetics. Antimicrob Agents Chemother 2007; 51(1): 208–214. DOI: 10.1128/AAC.00004-06

35. L.S. Strachunskii, Yu.B. Belousov, S.N. Kozlov (eds). Practical guide to anti-infective chemotherapy. Smolensk: MAKMAKh Publ., 2007; 462. (in Russ.)

36. Baranov A.A., Bogomilskij M.R., Volkov I.K., Geppe N.A., Kozlova L.V., Kozlov R.S., et al. The use of antibiotics in children in outpatient practice. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya 2007; 3: 200–210. (in Russ.)

37. Kozlov R.S., Sivaya O.V., Kretchikova O.I., Ivanchik N.V. Antimicrobial Resistance of Streptococcus pneumoniae in Russia over the 1999–2009 (Results of Multicenter Prospective Study PEHASus. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya 2010; 12(4): 329–341. (in Russ.)

38. Bakradze M.D., Tatochenko V.K., Polyakova A.S., Chashchina I.L., Khokhlova T.A., Gadliya D.D., Rogova O.A. Amoxicillin, the Main Drug for Treating Community-Acquired Pneumonia and Otitis Media, Recommended but Often Not Followed. Pediatricheskaya farmakologiya (Pediatric pharmacology) 2016; 13(5): 425–430. (in Russ.)

39. Community-acquired pneumonia in children. Clinical recommendations. Мoscow: Original-maket Publ., 2015; 64. (in Russ.)

40. The state register of medicines. https://grls.rosminzdrav.ru. The link is active on 21.02.2020. (in Russ.)

41. Yakovlev S.V. A new concept for the rational use of antibiotics in outpatient practice. Antibiotiki i khimioterapiya (Antibiotics and chemotherapy) 2019; 64(3–4): 48–58. (in Russ.) DOI: 10.24411/0235-2990-2019-100017


Review

For citations:


Sidorenko S.V., Dronov I.A. Amoxicillin in the treatment of acute respiratory infections in children: a dialogue between a microbiologist and a clinical pharmacologist. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2020;65(3):169-176. (In Russ.) https://doi.org/10.21508/1027-4065-2020-65-3-169-176

Views: 1106


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)