Preview

Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics)

Advanced search

The role of the renin-angiotensin system, immunological and genetic factors in children with COVID-19

https://doi.org/10.21508/1027-4065-2020-65-4-16-26

Abstract

It is a common fact that children are less susceptible to COVID-19 than adults, and they usually have milder forms often without symptoms, due to the age-related characteristics of their immune response and the features of the renin-angiotensin system (RAS). The recent studies have shown that the RAS elements are widely represented in the lungs, and they actively participate in the inflammation process in addition to their main vasoregulatory function. The cascade of RAS reactions is one of the key links in the pathogenesis of COVID-19, and it is analyzed from two positions: expression of ACE2 receptors and polymorphisms of certain genes of this system. The studies have demonstrated that the ACE2 transmembrane protein is both the “entry gate” for the virus, and it also plays a regulatory role, turning the pro-inflammatory vasoconstrictor angiotensin II into anti-inflammatory angiotensin (1—7) with vasodilating properties. A higher content of ACE2 in children as compared to that in adults maintains the RAS system balance and prevents the development of complications. It has been also found that certain genetic polymorphisms (AGTR1, AGTR2, ACE2, ACE) can cause the imbalance of RAS components, leading to more pronounced reactions of alveolocytes, vascular endothelium and smooth muscle fibers in response to SARS-CoV-2 infection due to a shift of the vasoconstrictor, proliferative and profibrotic mechanisms. The patients with certain genetic polymorphisms of NOS genes regulating vascular tone, cell growth and proliferation may have a genetic predisposition to the development of severe forms of COVID-19.

About the Authors

I. V. Nikitina
Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology
Russian Federation


A. E. Donnikov
Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology
Russian Federation


O. A. Krogh-Jensen
Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology; Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation


A. A. Lenyushkina
Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology
Russian Federation


N. D. Degtyareva
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation


А. V. Degtyareva
Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology; Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation


References

1. Dong Y., Mo X., Hu Y., Qi X., Jiang F., Jiang Z. et al. Epidemiology of COVID-19 Among Children in China. Pediatrics 2020; 145(6): e20200702. DOI: 10.1542/peds.2020-0702

2. Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi 2020; 41(2): 145-151. DOI: 10.3760/cma.j.issn.0254-6450.2020.02.003

3. Grasselli G., Zangrillo A., Zanella A., Antonelli M., Cabri-ni L., Castelli A. et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020. DOI: 10.1001/jama.2020.5394

4. Coronado Munoz A., Nawaratne U., McMann D., Ellsworth M., Meliones J., Boukas K. Late-Onset Neonatal Sepsis in a Patient with Covid-19. N Engl J Med 2020; 382(19): e49. DOI: 10.1056/NEJMc2010614

5. Diaz C.A., Maestro M.L., Pumarega M.T.M., Anton B.F., Alonso C.P. First case of neonatal infection due to COVID 19 in Spain. An Pediatr (Engl Ed) 2020; 92(4): 237-238. DOI: 10.1016/j.anpede.2020.03.002

6. ZengL., Xia S., Yuan W., Yan K., Xiao F., Shao J. et al. Neonatal Early-Onset Infection With SARS-CoV-2 in 33 Neonates Born to Mothers With COVID-19 in Wuhan, China. JAMA Pediatr 2020; e200878. DOI: 10.1001/jamapediatrics.2020.0878

7. Balduzzi A., Brivio E., Rovelli A., Rizzari C., Gasperini S., Melzi M.L. et al. Lessons After the Early Management of the COVID-19 Outbreak in a Pediatric Transplant and Hema-to-Oncology Center Embedded within a COVID-19 Dedicated Hospital in Lombardia, Italy. Estote Parati. Soc Sci Res Network 2020; 1-6. DOI: 10.2139/ssrn.3559560\\

8. Cristiani L., Mancino E., Matera L., Nenna R., Pierangeli A., Scagnolari C. et al. Will children reveal their secret? The coro-navirus dilemma. Eur Respir J 2020; 55(4): 2000749. DOI: 10.1183/13993003.00749-2020

9. Wat D. The common cold: a review of the literature. Eur J Intern Med 2004; 15(2): 79-88. DOI: 10.1016/j.ejim.2004.01.006

10. Byrd-LeotisL., CummingsR.D., Steinhauer D.A. The Interplay between the Host Receptor and Influenza Virus Hemagglutinin and Neuraminidase. Int J Mol Sci 2017; 18(7): 1541. DOI: 10.3390/ijms18071541

11. Yan R., Zhang Y, Li Y, Xia L., Guo Y., Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020; 367(6485): 1444-1448. DOI: 10.1126/science.abb2762

12. Shulla A., Heald-Sargent T, Subramanya G., Zhao J., Perlman S, Gallagher T. A Transmembrane Serine Protease Is Linked to the Severe Acute Respiratory Syndrome Coronavirus Receptor and Activates Virus Entry. J Virol 2011; 85(2): 873882. DOI: 10.1128/JVI.02062-10

13. Wang K., Chen W., Zhou Y-S., Lian J.-Q., Zhang Z., Du P. et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. bioRxiv 2020; 2020.03.14.988345. DOI: 10.1101/2020.03.14.988345

14. Newton A.H., Cardani A., Braciale T.J. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology. Semin Immunopathol 2016; 38(4): 471-482. DOI: 10.1007/s00281-016-0558-0

15. Ahmadpoor P., Rostaing L. Why the immune system fails to mount an adaptive immune response to a COVID-19 infection. Transpl Int 2020; 33(7): 824-825. DOI: 10.1111/tri.13611

16. Risitano A.M., Mastellos D.C., Huber-Lang M., Yancopou-lou D., Garlanda C., Ciceri F. et al. Complement as a target in COVID-19? Nat Rev Immunol 2020; 1-2. DOI: 10.1038/s41577-020-0320-7

17. Hedrich C.M. COVID-19 - Considerations for the paediatric rheumatologist. Clin Immunol 2020; 214: 108420. DOI: 10.1016/j.clim.2020.108420

18. Favalli E.G., Ingegnoli F., De Lucia O., Cincinelli G., Cimaz R., CaporaliR. COVID-19 infection and rheumatoid arthritis: Faraway, so close! Autoimmun Rev 2020; 19(5): 102523. DOI: 10.1016/j.autrev.2020.102523

19. Mehta P, McAuley D.F., Brown M., SanchezE., TattersallR.S., Manson J.J. COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet 2020; 395(10229): 1033-1034. DOI: 10.1016/S0140-6736(20)30628-0

20. Grom A.A. Primary Hemophagocytic Lymphohistiocyto-sis and Macrophage Activation Syndrome: The Importance of Timely Clinical Differentiation. J Pediatr 2017; 189: 19- 21.e1. DOI: 10.1016/j.jpeds.2017.07.025

21. Maschan M., Poltavets N. Hemophagocytic syndrome in emergency and intensive pediatrics. Pediatricheskaya farmakologiya (Pediatric pharmacology) 2011; 8(2): 15-21. (in Russ.)

22. McAdams R.M., Juul S.E. The role of cytokines and inflammatory cells in perinatal brain injury. Neurol Res Int 2012; special issue: 1-15. DOI: 10.1155/2012/561494

23. Wynn J.L., Levy O. Role of Innate Host Defenses in Susceptibility to Early Onset Neonatal Sepsis. Clin Perinatol 2010; 37(2): 307-337. DOI: 10.1016/j.clp.2010.04.001

24. Nikitina I.V., Zhukova A.S., Vanko L.V., Vtorushina V.V., Matveeva N.K., Krechetova L.V. et al. Cytokine status of preterm newborns with infectious and noninfectious diseases. Neonatologiya: Novosti, Mnenie, Obuchenie (Neonatology: News, Opinions, Training) 2018; 6 (4): 16-23. (in Russ.) DOI: 10.24411/2308-2402-2018-14002

25. Valiathan R., Ashman M., Asthana D. Effects of Ageing on the Immune System: Infants to Elderly. Scand J Immunol 2016; 83(4): 255-266. DOI: 10.1111/sji.12413

26. Tusupkaliyev B.T., Zhumalina A.K., Zhekeyeva B.A., Bayzha-nova R.M. Features of the immune response in newborns with low body weight during intrauterine infection. Nauka i zdravookhraneniye 2015; 5: 52-60. (in Russ.)

27. Zhukova A.S., Nikitina I.V., Vanko L.V., Matveeva N.K., Milaya O.V., Krechetova L.V., Ionov O.V. et al. Production of reactive oxygen species by peripheral blood phagocytes in preterm infants in the early neonatal period. Neonatologiya: Novosti, Mnenie, Obuchenie (Neonatology: News, Opinions, Training) 2016; 2: 89-96. (in Russ.)

28. Belyaeva A.S., Balashova E.N., Vanko L.V., Matveeva N.K., Milaya O.V., Krechetova L.V. The phenotypic and functional characteristics of phagocytes in the blood of premature infants in the early neonatal period. Akusherstvo i Ginekologiya (Obstetrics and Gynecology) 2014; 10: 59-65. (in Russ.)

29. Melville J.M., Moss T.J.M. The immune consequences of preterm birth. Front Neurosci 2013; 7: 79. DOI: 10.3389/fnins.2013.00079

30. Netea M.G., Dominguez-Andres J., Barreiro L.B., Chavakis T., Divangahi M., Fuchs E. et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol 2020; 20(6): 375-388. DOI: 10.1038/s41577-020-0285-6

31. Dolgikh S. Further Evidence of a Possible Correlation Between the Severity of Covid-19 and BCG Immunization. medRxiv 2020; 2020.04.07.20056994. DOI: 10.1101/2020.04.07.20056994

32. Miller A., Reandelar M.J., Fasciglione K., Roumenova V., Li Y., Otazu G.H. Correlation between Universal BCG Vaccination Policy and Reduced Morbidity and Mortality for COVID-19: An Epidemiological Study. Epidemiol 2020. DOI: 10.1101/2020.03.24.20042937

33. Chamsi-Pasha M.A.R., Shao Z., Tang W.H.W. Angiotensin-Converting Enzyme 2 as a Therapeutic Target for Heart Failure. Curr Heart Fail Rep 2014; 11(1): 58-63. DOI: 10.1007/s11897-013-0178-0

34. Hanff T.C., Harhay M.O., Brown T.S., Cohen J.B., Mo-hareb A.M. Is There an Association Between COVID-19 Mortality and the Renin-Angiotensin System-a Call for Epidemiologic Investigations. Clin Infect Dis 2020; ciaa329. DOI: 10.1093/cid/ciaa329

35. Jerng J.-S., Hsu Y.-C., Wu H.-D., Pan H.-Z, Wang H.-C., Shun C.-T. et al. Role of the renin-angiotensin system in ventilator-induced lung injury: an in vivo study in a rat model. Thorax 2007; 62(6): 527-535. DOI: 10.1136/thx.2006.061945

36. Ratliff B., Sekulic M., Rodebaugh J., Solhaug M.J. Angiotensin II regulates nitric oxide synthase expression in afferent arterioles of the developing porcine kidney. Pediatr Res 2010; 68(1): 29-34. DOI: 10.1203/PDR.0b013e3181e12770

37. Wagenaar G.T.M., Sengers R.M.A., Laghmani E.H., Chen X., Lindeboom M.P.H.A., Roks A.J.M. et al. Angiotensin II type 2 receptor ligand PD123319 attenuates hyperoxia-induced lung and heart injury at a low dose in newborn rats. Am J Physiol Lung Cell Mol Physiol 2014; 307(3): L261-272. DOI: 10.1152/ajplung.00345.2013

38. Xie X., Xudong X., Chen J. Age- and gender-related difference of ACE2 expression in rat lung. Life Sci 2006; 78(19): 2166— 2171. DOI: 10.1016/j.lfs.2005.09.038

39. Asperen R.M.W., Lutter R., Specht P.A., Moll G.N., van Woen-sel J.B., van der Loos C.M. et al. Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1—7) or an angiotensin II receptor antagonist. J Pathol 2011; 225(4): 618-627. DOI: 10.1002/path.2987

40. Kuba K, Imai Y., Rao S., Gao H., Guo F., Guan B. et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 2005; 11(8): 875879. DOI: 10.1038/nm1267

41. Chen J., Jiang Q., Xia X., Liu K., Yu Z., Tao W., Gong W., Han J.-D.J. Individual Variation of the SARS-CoV2 Receptor ACE2 Gene Expression and Regulation. Aging Cell 2020; 10.1111/acel.13168. https://www.preprints.org/manu-script/202003.0191/v1

42. Informe sobre la situacion de COVID-19 en Espana: Informe COVID-19 no 20. 3 de abril de 2020. Published online April 3, 2020. https://www.isciii.es/QueHacemos/Servicios/VigilanciaSaludPublicaRENAVE/EnfermedadesTransmis-ibles/Documents/INFORMES/Informes%20COVID-19/Informe%20n%C2%BA%2020.%20Situaci%C3%B3n%20de%20COVID-19%20en%20Espa%C3%B1a%20a%203%20de%20abril%20de%202020.pdf

43. Lopera E., Graaf A. van der, Lanting P., Geest M. van der, Study L.C., Fu J. et al. Lack of association between genetic variants at ACE2 and TMPRSS2 genes involved in SARS-CoV-2 infection and human quantitative phenotypes. medRxiv 2020; 2020.04.22.20074963. DOI: 10.1101/2020.04.22.20074963

44. Pinheiro D.S., Santos R.S., Jardim P.C.B.V., Silva E.G., Reis A.A.S., Pedrino G.R. et al. The combination of ACE I/D and ACE2 G8790A polymorphisms revels susceptibility to hypertension: A genetic association study in Brazilian patients. PloS One 2019; 14(8): e0221248. DOI: 10.1371/journal.pone.0221248

45. Darrah R.J., Jacono F.J., Joshi N., Mitchell A.L., Sattar A., Campanaro C.K. et al. AGTR2 absence or antagonism prevents cystic fibrosis pulmonary manifestations. J Cyst Fibros 2019; 18(1): 127-134. DOI: 10.1016/j.jcf.2018.05.013

46. Bonas-Guarch S., Guindo-Martinez M., Miguel-Escalada I., Grarup N., Sebastian D., Rodriguez-Fos E. et al. Re-analysis of public genetic data reveals a rare X-chromosomal variant associated with type 2 diabetes. Nat Commun 2018; 9(1): 1-14. DOI: 10.1038/s41467-017-02380-9

47. Konigshoff M., Wilhelm A., Jahn A., Sedding D., Amarie O.V., Eul B. et al. The angiotensin II receptor 2 is expressed and mediates angiotensin II signaling in lung fibrosis. Am J Re-spir Cell Mol Biol 2007; 37(6): 640-650. DOI: 10.1165/rcmb.2006-0379TR

48. Cui Q., Cui C., Huang C., Zhou W., Ji X., Zhang F., Wang L., Zhou Y. AGTR2, One Possible Novel Key Gene for the Entry of 2019-nCoV into Human Cells. Preprints 2020; 2020020194. DOI: 10.20944/preprints202002.0194.v1

49. Robillard S., Mercier C., Breton V., Paquin-Veillette J., Guay A., Lizotte F. et al. Ablation of angiotensin type 2 receptor prevents endothelial nitric oxide synthase glutathio-nylation and nitration in ischaemic abductor muscle of diabetic mice. Diab Vasc Dis Res 2020; 17(1): 1-10. DOI: 10.1177/1479164119883978

50. StennettA.K., QiaoX., FaloneA.E., Koledova V.V., KhalilR.A. Increased vascular angiotensin type 2 receptor expression and NOS-mediated mechanisms of vascular relaxation in pregnant rats. Am J Physiol-Heart Circ Physiol 2009; 296(3): H745-H755. DOI: 10.1152/ajpheart.00861.2008

51. Ionov O.V., Donnikov A.E., Bezlepkina M.B., Nikitina I.V., Balashova E.N., Kirtbaya A.R., Kryuchko D.S., Baibarina E.N. Relationship between polymorphism in NOS3, AGTR1, TLR9, DRD4 genes and severity of congenital pneumonia in newborns. Akusherstvo i Ginekologiya (Obstetrics and Gynecology) 2019; 5: 102-111. (in Russ.) DOI: 10.18565/aig.2019.5.102-111

52. Nikitina I.V., Donnikov A.E., Krogh-Jen-sen O.A., Lenyushkina A.A., Bystritsky A.A., Kryuchko D.S. et al. Congenital infection-associated genetic polymorphisms in children. Akusherstvo i Ginekologiya (Obstetrics and Gynecology) 2019; 11: 175-85 (in Russ.) DOI: 10.18565/aig.2019.11.175-185


Review

For citations:


Nikitina I.V., Donnikov A.E., Krogh-Jensen O.A., Lenyushkina A.A., Degtyareva N.D., Degtyareva А.V. The role of the renin-angiotensin system, immunological and genetic factors in children with COVID-19. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2020;65(4):16-26. (In Russ.) https://doi.org/10.21508/1027-4065-2020-65-4-16-26

Views: 10504


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)