Cereals and children’s health
https://doi.org/10.21508/1027-4065-2020-65-4-162-169
Abstract
Cereals are one of the main sources of energy, complex carbohydrates, vegetable proteins and fats, as well as vitamins, minerals and other important biologically active compounds used in everyday diets. The undeniable health benefits makes these products necessary in the human diet. Hypoglycemic conditions are unacceptable in the period of active growth and development of the brain, as they can disrupt its functioning; to maintain normoglycemia, especially after nightly fasting, it is important to have breakfast with cereals. This is especially important for brain maturation in children with subsequent long-term impact on the development of cognitive functions. Tryptophan-enriched cereals are useful for correcting the sleep-waking cycle in children, especially young children, and also they have a positive effect on mood. Whole grains products help to reduce the risk of cardiovascular diseases, diabetes mel-litus, obesity, colon cancer, due to their prebiotic effect.
About the Authors
A. I. KhavkinRussian Federation
Moscow
T. A. Kovtun
Russian Federation
Moscow
D. V. Makarkin
Russian Federation
Moscow
O. B. Fedotova
Russian Federation
Moscow
O. N. Komarova
Russian Federation
Moscow
References
1. Topping D. Cereal complex carbohydrates and their contribution to human health. J Cereal Sci 2007; 46: 220—229. DOI: 10.1016/j.jcs.2007.06.004
2. Okarter N., Liu R.H. Health benefits of whole grain phytochemicals. Crit Rev Food Sci Nutr 2010; 50: 193—208. DOI: 10.4172/2155-9600.1000191
3. Digest A.M., Platani C., Cattivelli L., Mangini G., Blanco A. Genetic variability in yellow pigment components in cultivated and wild tetraploid wheats. J Cereal Sci 2009; 50: 210—218. DOI: 10.1016/j.jcs.2009.05.002
4. Okarter N., Liu R.H. Health benefits of whole grain phytochemicals. Crit Rev Food Sci Nutr 2010; 50: 193—208. DOI: 10.1080/10408390802248734
5. Adom K.K., SorrellsM.E., Liu R.H. Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. J Ag-ric Food Chem 2005; 53: 2297-2306. DOI: 10.1021/jf048456d
6. Borrelli G.M., De Leonardis A.M., Platani C., Troccoli A. Distribution along durum wheat kernel of the components involved in semolina colour. J Cereal Sci 2008; 48: 494-502. DOI: 10.1016/j.jcs.2007.11.007
7. Abdel-Aal E.M.S., Young J.C., Rabalski I., Hucl P., Frege-au-Reid J. Identification and quantification of seed carotenoids in selected wheat species. J Agric Food Chem 2007; 55: 787-794. DOI: 10.12691/ijcd-5-2-6
8. Yeum K.J., Russell R.M. Carotenoid bioavailability and bioconversion. Annu Rev Nutr 2002; 22: 483-504. DOI: 10.1146/annurev.nutr.22.010402.102834
9. Mueller L., Boehm V. Antioxidant activity of p-carotene compounds in different in vitro assays. Molecules 2011; 16: 10551069. DOI: 10.3390/molecules16021055
10. Rao A.V., Rao L.G. Carotenoids and human health. Pharmacol Res 2007; 55: 207-216. DOI: 10.1016/j.phrs.2007.01.012
11. Landrum J.T., Bone R.A. Dietary lutein & zeaxanthin: Reducing the risk for macular degeneration. Agron Food Ind Hi-Tech 2004; 15: 22-25.
12. Singh P., Goyal G.K. Dietary lycopene: Its properties and anticarcinogenic effects. Compr Rev Food Sci Food Saf 2008; 7: 255-270. DOI: 10.1111/j.1541-4337.2008.00044.x
13. Nishino H., Murakoshi M., Tokuda H., Yoshiko S. Cancer prevention by carotenoids. Arch Biochem Biophys 2009; 483: 165-168. DOI: 10.3390/agriculture3010170
14. Liu R.H. Potential synergy of phytochemicals in cancer prevention: mechanism ofaction. J Nutr 2004; 134: S3479-3485.
15. Adom K.K., Sorrells M.E., Liu R.H. Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. J Ag-ric Food Chem 2005; 53: 2297-2306. DOI: 10.1021/jf048456d
16. Adom K.K., Liu R.H. Antioxidant activity of grains. J Agric Food Chem 2002; 50: 6182-6187.
17. Smith M.M., Hartley R.D. Occurrence and nature of ferulic acid substitution of cell wall polysaccharides in gramineous plants. Carbohydr Res 1983; 118: 65-80.
18. Klepacka J., FornalL. Ferulic acid and its position among the phenolic compounds of wheat. Crit Rev Food Sci Nutr 2006; 46: 639-647. DOI: 10.1080/10408390500511821
19. Andreasen M.F., Kroon P.A., Williamson G., Garcia-Cone-sa M.T. Intestinal release and uptake of phenolic antioxidant diferulic acids. Free Radic Biol Med 2001; 31: 304-314.
20. Haro-Vicente J.F., Bernal-Cava M.J., Lopez-Fernandez A., Ros-Berruezo G., Bodenstab S., Sanchez-Siles L. Sensory Acceptability of Infant Cereals with Whole Grain in Infants and Young Children. Nutrients 2017; 9(1): 65. DOI: 10.3390/nu9010065
21. Del Pozo-Insfran D., Brenes C.H., Serna Saldivar S.O., Tal-cott S.T. Polyphenolic and antioxidant content of white and blue corn (Zea mays L.) products. Food Res Int 2006; 39: 696-703. DOI: 10.1016/j.foodres.2006.01.014
22. Zofajova A., Psenakova I., Havrlentovk M., Piliarovk M. Accumulation of total anthocyanins in wheat grain. Agricolture 2012; 58: 50-56. DOI: 10.2478/v10207-012-0006-7
23. Ficco D.B.M., de Simone V., Colecchia S.A., Pecorella I., Pla-tani C., Nigro F. et al. Genetic variability in anthocyanin composition and nutritional properties of blue, purple, and red bread (Triticum aestivum L.) and durum (Triticum turgidum L. ssp. turgidum convar. durum) wheats. J Agric Food Chem 2014; 62: 8686-8695. DOI: 10.1021/jf5003683
24. Ranilla L.G., Genovese M.I., Lajolo F.M. Polyphenols and antioxidant capacity of seed coat and cotyledon from Brazilian and Peruvian bean cultivars (Phaseolus vulgaris L.) J Agric Food Chem 2007; 55: 90-98. DOI: 10.1021/jf062785j
25. Treutter D. Significance of flavonoids in plant resistance: A review. Environ Chem Lett 2006; 4: 147-157. DOI: 10.1007/s10311-006-0068-8
26. Azuma A., Yakushiji H., Koshita Y., Kobayashi S. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 2012; 236: 1067-1080. DOI: 10.1007/s00425-012-1650-x
27. Chen C., Li H., Zhang D, Li P., Ma F. The role of anthocy-anin in photoprotection and its relationship with the xantho-phyll cycle and the antioxidant system in apple peel depends on the light conditions. Physiol Plant 2013; 49: 354-366. DOI: 10.1111/ppl.12043
28. Shipp J., Abdel-Aal E.-S. Food applications and physiological effects of anthocyanins as functional food ingredients. Open Food Sci J 2010; 4: 7-22. DOI: 10.2174/1874256401004010007
29. Bowen-Forbes C.S., Zhang Y., Nair M.G. Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. J Food Compos Anal 2010; 23: 554-560. DOI: 10.1016/j.jfca.2009.08.012
30. Wang L.S., Stoner G.D. Anthocyanins and their role in cancer prevention. Cancer Lett 2008; 269: 281-290. DOI: 10.1016/j.canlet.2008.05.020
31. Ghosh D., Konishi T. Anthocyanins and anthocyanin-rich extracts: Role in diabetes and eye function. Asia Pac J Clin Nutr 2007; 16: 200-208.
32. De Pascual-Teresa S., Moreno D.A., Darcia-Viguera C. Flava-nols and anthocyanins in cardiovascular health. Int J Mol Sci 2010; 11: 1679-1703. DOI: 10.3390/ijms11041679
33. Cordain L., Eaton S.B., Sebastian A., Mann N., Lindeberg S., Watkins B.A. et al. Origins and evolution of the Western diet: Health implications for the 21st century. Am J Clin Nutr 2005; 81: 341-354. DOI: 10.1093/ajcn.81.2.341
34. Bett-GarberK.L., Lea J.M., ChampagneE.T., McClungA.M. Whole-grain rice flavor associated with assorted bran colors. J Sens Stud 2012; 27: 78-86. DOI: 10.1111/j.1745-459X.2011.00368.x
35. Okarter N., Liu R.H. Health benefits of whole grain phytochemicals. Crit Rev Food Sci Nutr 2010; 50: 193-208. DOI: 10.1080/10408390802248734
36. Slavin J. Whole grains and digestive health. Cereal Chem 2010; 87: 292-296. DOI: 10.1094/CCHEM-87-4-0292
37. Fardet A. New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fibre? Nutr Res Rev 2010; 23: 65-134. DOI: 10.1017/S0954422410000041
38. MaX., Tang W.G., Yang Y., ZhangQ.L., Zheng J.L., Xiang Y.B. Association between whole grain intake and all-cause mortality: a meta-analysis of cohort studies. Oncotarget 2016; 7: 61996-62005. DOI: 10.18632/oncotarget.11491
39. Agostoni C., Decsi T., Fewtrell M., Goulet O., Kolacek S., Koletzko B. et al. ESPGHAN Committee on Nutrition. Complementary Feeding: A Commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr 2008; 46:99-110. DOI: 10.1097/01.mpg.0000304464.60788.bd.
40. Mennella J.A., Trabulsi J.C. Complementary foods and flavor experiences: Setting the foundation. Ann Nutr Metab 2012; 60: 40-50. DOI: 10.1159/000335337
41. Alexy U., Zorn C., Kersting M. Whole grain in children’s diet: Intake, food sources and trends. Eur J Clin Nutr 2010; 64: 745-751. DOI: 10.1038/ejcn.2010.94.
42. Slavin J., Tucker M., Harriman C., Jonnalagadda S.S. Whole grains: Definition, dietary recommendations, and health benefits. Cereal Chem 2016; 93: 209-216. DOI: 10.1016/j.jcm.2016.08.008
43. Ferruzzi M.G., Jonnalagadda S.S., Liu S., Marquart L., McKeown N., Reicks M. et al. Developing a standard definition of whole-grain foods for dietary recommendations: Summary report of a multidisciplinary expert roundtable discussion. Adv Nutr 2014; 5: 164-176. DOI: 10.3945/an.113.005223
44. Signes-Pastor A., Carey M., Meharg A.A. Inorganic arsenic in rice-based products for infants and young children. Food Chem 2016; 191: 128-134. DOI: 10.1016/j.food-chem.2014.11.078
45. Seal C.J., Brownlee I.A. Whole-grain foods and chronic disease: evidence from epidemiological and intervention studies. Proc Nutr Soc 2015; 74(3): 313-319. DOI: 10.1017/S0029665115002104
46. Wessells K.R., Brown K.H. Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE 2012; 7: e5056810. DOI: 10.1371/journal.pone.0050568
47. Slavin J.L. Whole grains, refined grains, and fortified refined grains: What’s the difference? Asia Pac J Clin Nutr 2000; 9: S23-S27.
48. Eichler K., Wieser S., Rathemann I., BraggerI. Effects of micronutrient fortified milk and cereal food for infants and children: a systematic review. BMC Public Health 2012; 12: 506.
49. Bubenik G.A., Konturek S.J. Melatonin and aging: prospects for human treatment. J Physiol Pharmacol 2011; 62(1): 13-19.
50. Cubero J., Narciso D., Terron M.P., Rial R., Esteban S., Rivero M. et al. Chrononutrition applied to formula milks to consolidate infants’ sleep/wake cycle. Neuroendocrinol Lett 2007; 28(4): 360-366.
51. Sanchez S., Sanchez C.L., Paredes S.D., Barriga C., Rodriguez A.B. Circadian levels of serotonin in plasma and brain after oral administration of tryptophan in rats. Basic Clin Pharmacol 2008; 104: 52-59. DOI: 10.1111/j.1742-7843.2008.00333.x
52. Jawhara M., Serensen S.B., Heitmann B.L., Andersen V. Biomarkers of Whole-Grain and Cereal-Fiber Intake in Human Studies: A Systematic Review of the Available Evidence and Perspectives. Nutrients 2019; 11(12): 2994. DOI: 10.3390/nu11122994
53. Kamar M., Evans C., Hugh-Jones S. Factors Influencing British Adolescents’ Intake of Whole Grains: A Pilot Feasibility Study Using Sense Cam Assisted Interviews. Nutrients 2019; 11(11): 2620. DOI: 10.3390/nu11112620
54. Jones J.M., Garcia C.G., Braun H.J. Perspective: Whole and Refined Grains and Health-Evidence Supporting «Make Half Your Grains Whole». Adv Nutr 2020; 11(3): 492-506. DOI: 10.1093/advances/nmz114
55. Cubero J., Otalora B.B., Bravo R., Sanchez C.L., Franco L., Uguz A.C. et al. Distribution of 5-HT receptors in the mammalian brain. Trends Cell Mol Biol 2011; 6: 41-46.
56. Bravo R., Matito S., Cubero J., Paredes S.D., Franco L., Rivero M. et al. Tryptophan-enriched cereal intake improves nocturnal sleep, melatonin, serotonin, and total antioxidant capacity levels and mood in elderly humans. Age (Dordr) 2013; 35(4): 1277-1285. DOI: 10.1007/s11357-012-9419-5
57. Zhang X.F., Wang X.K., Tang Y.J., Guan X.X., Guo Y., Fan J.M., Cui L.L. Association of whole grains intake and the risk of digestive tract cancer: a systematic review and meta-analysis. Nutr J 2020; 19(1): 52. DOI: 10.1186/s12937-020-00556-6
58. Huttenlocher P.R., Dabholkar A.S. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 1997; 387: 167-178.
59. Adebo O.A., Gabriela Medina-Meza I. Impact of Fermentation on the Phenolic Compounds and Antioxidant Activity of Whole Cereal Grains: A Mini Review. Molecules 2020; 25(4): 927. DOI: 10.3390/molecules25040927
60. Mata M., Fink D.J., Gainer H., Smith C.B., Davidsen L. et al. Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J Neurochem 1980; 34: 213-215.
61. Bellisle F. Effects of diet on behaviour and cognition in children. Br J Nutr 2004; 92: S227-S232. DOI: 10.1079/ BJN20041171
62. Donin A.S., Nightingale C.M., Owen C.G., Rudnicka A.R., Perkin M.R. et al. Regular Breakfast Consumption and Type 2 Diabetes Risk Markers in 9- to 10-Year-Old Children in the Child Heart and Health Study in England (CHASE): A Cross-Sectional Analysis. PLoS Med 2014; 11(9): e1001703. DOI: 10.1371/journal.pmed.1001703
63. Theodore R.F., Thompson J.M.D., Waldie K.E., Wall C., Becroft D.M.O., Robinson E. et al. Dietary patterns and intelligence in early and middle childhood. Intelligence 2009; 37: 506-513. DOI: 10.1016/j.intell.2009.07.001
64. Taki Y, Hashizume H., Sassa Y, Takeuchi H, Asano M., Asa-no K., Kawashima R. Breakfast Staple Types Affect Brain Gray Matter \folume and Cognitive Function in Healthy Children. PLoS One 2010; 5(12): e15213. DOI: 10.1371/journal.pone.0015213
65. Foster-Powell K., Holt S.H., Brand-Miller J.C. International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr 2002; 76: 5-56. DOI: 10.1093/ajcn/76.1.5
66. Edefonti V., Rosato V., Parpinel M., Nebbia G., Fiorica L., Fos-sali E. et al. The effect of breakfast composition and energy contribution on cognitive and academic performance: a systematic review. Am J Clin Nutr 2014; 100(2): 626-656. dOi: 10.3945/ajcn.114.083683
67. ParfenovA.I., MayevI.V., BaranovA.A., Bakulin I.G., Sabel’nikova E.A., Krums L.M. et al. All-Russian consensus on the diagnosis and treatment of celiac disease in children and adults. Al’manakh klinicheskoy meditsiny 2016; 44(6): 661-688. (in Russ.)
68. Wieser H. Relation between gliadin structure and celiac toxity. Acta Paediatr 1996; Suppl. 412: 3-9.
69. Fraser J.S., Engel W., Ellis H.J., Moodie S.J., Pollock E.L., Wieser H., Ciclitira P.J. Coeliac disease: in vivo toxicity of the putative immunodominant epitope. Gut 2003; 52: 16981702. DOI: 10.1136/gut.52.12.1698
70. Komarova O.N., Khavkin A.I. Features of actual nutrition and nutritional status of children with celiac disease. Pediatriya. Zhurnal im. G.N. Speranskogo (Pediatria. Journal named after G.N. Speransky) 2018; 97(6): 99-103. (in Russ.)
71. Shapovalova N.S., Novikova V.P., Revnova M.O., Lapin S.V., Kholopova I.V., Khavkin A.I. The role of HLA-DQ2.2 genotype for patients with celiacia. Eksperimental’naia i klinicheskaia gastroenterologiia (Experimental and Clinical Gastroenterology) 2018;159(11): 19-23. (in Russ.) DOI: 10.31146/1682-8658-ecg-159-11-19-23
72. Bel’mer S.V., Razu-movskiyA.Yu., Khavkin A.I., AlkhasovA.B., Bekhtereva M.K., Volynets G.V. et al. Intestinal diseases in children. Moscow, 2018; 2: 496. (in Russ.)
73. Novikova V.P., Khavkin A.I., Shapovalova N.S. Extra-laboratory diagnosis of coeliac disease. Vfopr prakt pediatr (Clinical Practice in Pediatrics) 2018; 13(5): 62-67. (in Russ.) DOI: 10.20953/1817-7646-2018-5-62-67
74. Parfenov A.I., Bykova S.V., Sabel’nikova E.A., Mayev I.V., Baranov A.A., Bakulin I.G. et al. All-Russian consensus on the diagnosis and treatment of celiac disease in children and adults. Terapev-ticheskii arkhiv 2017; 89(3): 94-107. (in Russ.)
75. Komarova O.N., Khavkin A.I. Products on cereal-based diet in adult and child: what’s new? Eksperi-mental’naya i Klinicheskaya Gastroenterologiya (Experimental and Clinical Gastroenterology) 2017; 142(6): 133-140. (in Russ.)
Review
For citations:
Khavkin A.I., Kovtun T.A., Makarkin D.V., Fedotova O.B., Komarova O.N. Cereals and children’s health. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2020;65(4):162-169. (In Russ.) https://doi.org/10.21508/1027-4065-2020-65-4-162-169