Preview

Российский вестник перинатологии и педиатрии

Расширенный поиск

Биологическая роль зонулина и эффективность его использования в качестве биомаркера синдрома повышенной кишечной проницаемости

https://doi.org/10.21508/1027-4065-2021-66-1-31-38

Полный текст:

Аннотация

Изменение рациона, а также широкий спектр патологических состояний, обусловленных инфекционным агентом, аллергическим или аутоиммунным воспалительным процессом, влияют на биологические ритмы пищеварительного тракта, что оказывает негативное действие на кишечную микробиоту и приводит к повышению проницаемости слизистой оболочки кишечника. Измененная микробиота потенцирует воспаление и способствует возникновению патологического «замкнутого круга». Фактором, модулирующим плотность межклеточных соединений, является белок зонулин. В обзоре представлены данные о биологической роли зонулина, возможностях коррекции при нарушении его синтеза с помощью функциональных продуктов для детского питания.

Об авторах

А. И. Хавкин
ОСП «Научно-исследовательский клинический институт педиатрии им. академика Ю.Е. Вельтищева» ФГАОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России
Россия

Хавкин Анатолий Ильич – доктор медицинских наук, профессор, главный научный сотрудник отдела гастроэнтерологии 

125412 Москва, ул. Талдомская, д. 2



Н. М. Богданова
ФГБОУ ВО «Санкт-Петербургский государственный педиатрический медицинский университет» Минздрава России
Россия

Богданова Наталья Михайловна – кандидат медицинских наук, доцент кафедры пропедевтики детских болезней с курсом общего ухода за детьми

Санкт-Петербург



В. П. Новикова
ФГБОУ ВО «Санкт-Петербургский государственный педиатрический медицинский университет» Минздрава России
Россия

Новикова Валерия Павловна – доктор медицинских наук, профессор, зав. кафедрой пропедевтики детских болезней с курсом общего ухода за детьми, зав. лабораторией медико-социальных проблем в педиатрии 

Санкт-Петербург



Список литературы

1. Salvo Romero E., Alonso Cotoner C., Pardo Camacho C., Casado Bedmar M., Vicario M. The intestinal barrier function and its involvement in digestive disease. Rev Esp Enferm Dig 2015; 107: 686–696. DOI: 10.17235/reed.2015.3846/2015

2. Spadoni I., Zagato E., Bertocchi A., Paolinelli R., Hot E., Di Sabatino A. et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science 2015; 350: 830–834. DOI: 10.1126/science.aad0135

3. uigley E.M.M. Leaky gut – concept or clinical entity? Curr Opin Gastroenterol 2016; 32(2): 74–79. DOI: 10.1126/science.aad0135

4. Odenwald M.A., Turner J.R. The intestinal epithelial barrier: A therapeutic target? Nat Rev Gastroenterol Hepatol 2017; 14(1): 9–21. DOI: 10.1038/nrgastro.2016.169

5. Talley N.J. Moving Away From Focussing on Gastric Pathophysiology in Functional Dyspepsia: New Insights and Therapeutic Implications. Am J Gastroenterol 2017; 112: 141–144. DOI: 10.1038/ajg.2016.519

6. Tran C.D., Grice D.M., Wade B., Kerr C.A., Bauer D.C., Li D., Hannan G.N. Gut permeability, its interaction with gut microflora and effects on metabolic health are mediated by the lymphatics system, liver and bile acid. Future Microbiol 2015; 10: 1339–1353. DOI: 10.2217/FMB.15.54

7. Verwoerd A., Ter Haar N.M., de Roock S., Vastert S.J., Bogaert D. The human microbiome and juvenile idiopathic arthritis. Pediatr Rheumatol Online J 2016; 14: 55. DOI: 10.1186/s12969-016-0114-4

8. Hu E.-D., Chen D.-Z., Wu J.-L., Lu F.-B., Chen L., Zheng M.-H. et al. High fiber dietary and sodium butyrate attenuate experimental autoimmune hepatitis through regulation of immune regulatory cells and intestinal barrier. Cell Immunol 2018; 328: 24–32. DOI: 10.1016/j.aninu.2020.10.001

9. Bischoff S.C., Barbara G., Buurman W., Ockhuizen T., Schulzke J.-D., Serino M. et al. Intestinal permeability – A new target for disease prevention and therapy. BMC Gastroenterol 2014; 14: 189. DOI: 10.1186/s12876-014-0189-7

10. oniewska B., W grzyn D., Adamek K., Kaczmarczyk M., Skonieczna-Żydecka K., Adler G. et al. The Influence of Maternal-Foetal Parameters on Concentrations of Zonulin and Calprotectin in the Blood and Stool of Healthy Newborns during the First Seven Days of Life. An Observational Prospective Cohort Study. J Clin Med 2019; 8(4): E47. DOI: 10.3390/jcm8040473

11. Ohlsson B., Orho-Melander M., Nilsson P.M. Higher Levels of Serum Zonulin May Rather Be Associated with Increased Risk of Obesity and Hyperlipidemia, Than with Gastrointestinal Symptoms or Disease Manifestations. Int J Mol Sci 2017; 18(3): E582. DOI: 10.3390/ijms18030582

12. Krakowiak O., Nowak R. Mikroflora przewodu pokarmowego człowieka–znaczenie, rozwój, modyfikacje. Post Fitoter 2015; 3: 193–200.

13. Хавкин А.И., Ипполитов Ю.А., Алешина Е.О., Комарова О.Н. Микробиота и болезни полости рта. Экспериментальная и клиническая гастроэнтерология 2015; 6(118): 78–81.

14. Хавкин А.И. Микрофлора пищеварительного тракта. М.: Фонд социальной педиатрии, 2006; 416.

15. Zhang Y.G., Xia Y., Lu R., Sun J. Inflammation and intestinal leakiness in older HIV+ individuals with fish oil treatment. Genes Dis 2018; 5(3): 220–225 DOI: 10.1016/j.gendis.2018.07.001

16. Pastor L., Langhorst J., Schröder D., Casellas A., Ruffer A., Carrillo J. et al. Different pattern of stool and plasma gastrointestinal damage biomarkers during primary and chronic HIV infection. PLoS One 2019; 14(6): e0218000. DOI: 10.1371/journal.pone.0218000

17. Linsalata M., Riezzo G., D’Attoma B., Clemente C., Orlando A., Russo F. Noninvasive biomarkers of gut barrier function identify two subtypes of patients suffering from diarrhoea predominant-IBS: a case-control study. BMC Gastroenterol 2018; 18(1): 167. DOI: 10.1186/s12876-018-0888-6

18. Wegh C.A.M., de Roos N.M., Hovenier R., Meijerink J., Besseling-van der Vaart I. et al. Intestinal Permeability Measured by Urinary Sucrose Excretion Correlates with Serum Zonulin and Faecal Calprotectin Concentrations in UC Patients in Remission. J Nutr Metab 2019; 2019: 2472754. DOI: 10.1155/2019/2472754

19. Ling X., Linglong P., Weixia D., Hong W. Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPSInduced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model. PLoS ONE 2016; 11: e0161635. DOI: 10.1371/journal.pone.0161635

20. Vojdani A., Vojdani E., Kharrazian D. Fluctuation of zonulin levels in blood vs stability of antibodies. World J Gastroenterol 2017; 23: 5669–5679. DOI: 10.3748/wjg.v23.i31.5669

21. Scheffler L., Crane A., Heyne H.O., Toenjes A., Schleinitz D., Ihling C.H. et al. Widely used commercial ELISA for human Zonulin reacts with Complement C3 rather than pre-Haptoglobin 2. bioRxiv 2017:157578. DOI: 10.1101/157578

22. Wu M., Wu Y., Deng B., Li J., Cao H., Qu Y., Qian X., Zhong G. Isoliquiritigenin decreases the incidence of colitis-associated colorectal cancer by modulating the intestinal microbiota. Oncotarget 2016; 7: 85318–85331. DOI: 10.18632/oncotarget.13347

23. Trachtman H., Gipson D.S., Lemley K.V., Troost J.P., Faul C., Morrison D.J. et al. Plasma Zonulin Levels in Childhood Nephrotic Syndrome. Front Pediatr 2019; 7: 197. DOI: 10.3389/fped.2019.00197

24. Kim A.S., Ko H.J. Plasma concentrations of zonulin are elevated in obese men with fatty liver disease. Diabetes Metab Syndr Obes 2018; 11: 149–157. DOI: 10.2147/DMSO. S163062

25. Stenman L.K., Lehtinen M.J., Meland N., Christensen J.E., Yeung N. et al. Probiotic With or Without Fiber Controls Body Fat Mass, Associated With Serum Zonulin, in Overweight and Obese Adults-Randomized Controlled Trial. EBioMedicine 2016; 13: 190–200. DOI: 10.1016/j.ebiom.2016.10.036

26. Barengolts E., Green S.J., Chlipala G.E., Layden B.T., Eisenberg Y., Priyadarshini M., Dugas L.R. Predictors of Obesity among Gut Microbiota Biomarkers in African American Men with and without Diabetes. Microorganisms 2019; 7(9): E320. DOI: 10.3390/microorganisms7090320

27. Хавкин А.И., Волынец Г.В., Никитин А.В. Взаимосвязь кишечного микробиома и метаболизма желчных кислот. Вопросы практической педиатрии 2020; 15(1): 53–60.

28. Комарова О.Н., Хавкин А.И. Взаимосвязь стресса, иммунитета и кишечной микробиоты. Педиатрическая фармакология 2020; 17(1): 18–24. DOI: 10.15690/pf.v17i1.2078. (in Russ.)

29. Pietrukaniec M., Migacz M., Żak-Gołąb A., Olszanecka-Glinianowicz M., Chudek J. et al. Zonulin Family Peptide Levels in Ascites and Serum in Patients with Liver Cirrhosis: A Preliminary Study. Dis Markers 2019; 2019: 2804091. DOI: 10.1155/2019/2804091

30. Guerrant R.L., Leite A.M., Pinkerton R., Medeiros P.H., Cavalcante P.A., DeBoer M. et al. Biomarkers of Environmental Enteropathy, Inflammation, Stunting, and Impaired Growth in Northeast Brazil. PLoS One 2016; 11(9): e0158772. DOI: 10.1371/journal.pone.0158772.

31. Horvath A., Rainer F., Bashir M., Leber B., Schmerboeck B., Klymiuk I. et al. Biomarkers for oralization during long-term proton pump inhibitor therapy predict survival in cirrhosis. Sci Rep 2019; 9(1) :12000. DOI: 10.1038/s41598-01948352-5

32. Kasai C., Sugimoto K., Moritani I., Tanaka J., Oya Y., Inoue H. et al. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterol 2015; 15: 100. DOI: 10.1186/s12876-015-0330-2

33. Stanislawski M.A., Dabelea D., Wagner B.D., Sontag M.K., Lozupone C.A., Eggesbø M. Pre-pregnancy weight, gestational weight gain, and the gut microbiota of mothers and their infants. Microbiome 2017; 5: 113. DOI: 10.1186/s40168-017-0332-0

34. Egshatyan L., Kashtanova D., Popenko A., Tkacheva O., Tyakht A., Alexeev D. et al. Gut microbiota and diet in patients with different glucose tolerance. Endocr Connect 2016; 5: 1–9. DOI:10.1530/EC-15-0094

35. Crusell M.K.W., Hansen T.H., Nielsen T., Allin K.H., Rühlemann M.C., Damm P. et al. Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum. Microbiome 2018; 6: 89. DOI: 10.1186/s40168-018-0472-x

36. Tang W.H., Wang Z., Kennedy D.J., Wu Y., Buffa J.A., Agatisa-Boyle B. et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 2015; 116: 448–455. DOI: 10.1161/CIRCRESAHA.116.305360

37. Tomasova L., Dobrowolski L., Jurkowska H., Wróbel M., Huc T., Ondrias K. et al. Intracolonic hydrogen sulfide lowers blood pressure in rats. Nitric Oxide 2016; 60: 50–58. DOI: 10.1016/j.niox.2016.09.007

38. Zacarías M.F., Collado M.C., Gómez-Gallego C., Flinck H., Aittoniemi J., Isolauri E. et al. Pregestational overweight and obesity are associated with differences in gut microbiota composition and systemic inflammation in the third trimester. PLoS ONE 2018; 13: e0200305. DOI: 10.1371/journal. pone.0200305

39. Lv L.-J., Li S.-H., Li S.-C., Zhong Z.-C., Duan H.-L., Tian C. et al. Early-Onset Preeclampsia Is Associated With Gut Microbi Alterations in Antepartum and Postpartum Women. Front Cell Infect Microbiol 2019; 9: 224. DOI: 10.3389/fcimb.2019.00224.

40. Gomez-Arango L.F., Barrett H.L., McIntyre H.D., Callaway L.K., Morrison M., Dekker Nitert M. et al. Connections between the gut microbiome and metabolic hormones in early pregnancy in overweight and obese women. Diabetes 2016; 65: 2214–2223. DOI: 10.2337/db16-0278

41. Taylor B.D., Ness R.B., Olsen J., Hougaard D.M., Skogstrand K., Roberts J.M. et al. Serum leptin measured in early pregnancy is higher in women with preeclampsia compared with normotensive pregnant women. Hypertension 2015; 65: 594–599. DOI: 10.1161/HYPERTENSIONAHA.114.03979

42. Natividad J.M., Lamas B., Pham H.P., Michel M.L., Rainteau D., Bridonneau C. et al. Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice. Nat Commun 2018; 9: 2802. DOI: 10.1038/s41467-018-05249-7

43. Hunter C.A., Jones S.A. IL-6 as a keystone cytokine in health and disease. Nat Immunol 2015; 16: 448–457. DOI: 10.1038/ni.3153

44. Han Y.W. Fusobacterium nucleatum: a commensal-turned pathogen. Curr Opin Microbiol 2015; 23: 141–147. DOI: 10.1016/j.mib.2014.11.013

45. Krautkramer K.A., Kreznar J.H., Romano K.A., Vivas E.I., Barrett-Wilt G.A., Rabaglia M.E. et al. Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol Cell 2016;64, 982–992. DOI: 10.1016/j. molcel.2016.10.025

46. Schiering C., Wincent E., Metidji A., Iseppon A., Li Y., Potocnik A. J. et al. Feedback control of AHR signalling regulates intestinal immunity. Nature 2017; 542: 242–245. DOI: 10.1038/nature21080

47. Yan Q., Gu Y., Li X., Yang W., Jia L., Chen C. et al. Alterations of the gut microbiome in hypertension. Front Cell Infect Microbiol 2017; 7: 381. DOI: 10.3389/fcimb.2017.00381

48. Guo X., Li S., Zhang J., Wu F., Li X., Wu D. et al. Genome sequencing of 39 Akkermansia muciniphila isolates reveals its population structure, genomic and functional diverisity, and global distribution in mammalian gut microbiotas. BMC Genomics 2017; 18: 800. DOI: 10.1186/s12864-017-4195-3

49. Rhee S.H., Potoulakis C., Maye E.A. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 2009; 6: 309–314. DOI: 10.1038/nrgastro.2009.35

50. Stevens B.R., Goel R., Seungbum K., Richards E.M., Holbert R.C., Pepine C. J., Raizada M.K. Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression. Gut 2018; 67(8): 1555–1557. DOI: 10.1136/gutjnl-2017-314759

51. Bruce-Keller A.J., Salbaum J.M., Luo M., Blanchard E., Taylor C.M., Welsh D.A., Berthoud H.-R. Reply to: Highfat diet-induced dysbiosis as a cause of neuroinflammation. Biological Psychiatry 2016; 80(1): E5–E6. DOI: 10.1016/j. biopsych.2015.11.006

52. Yang C., Gao J., Zhang J., Luo A.L. Enterochromaffin cells in the gut: a distant regulator of brain function? Gut 2018; 67(8): 1557–1558. DOI: 10.1155/2019/7902874

53. Ganda Mall J.P., Östlund-Lagerström L., Lindqvist C.M., Algilani S., Rasoal D., Repsilber D. et al. Are self-reported gastrointestinal symptoms among older adults associated with increased intestinal permeability and psychological distress? BMC Geriatr 2018; 18(1): 75. DOI: 10.1186/s12877-0180767-6

54. Lv W.J., Wu X.L., Chen W.Q., Li Y.F., Zhang G.F., Chao L.M. et al. The Gut Microbiome Modulates the Changes in Liver Metabolism and in Inflammatory Processes in the Brain of Chronic Unpredictable Mild Stress Rats. Oxid Med Cell Longev 2019; 2019: 7902874. DOI: 10.1155/2019/7902874

55. Alvarez-Mon M.A., Gómez A.M., Orozco A., Lahera G., Sosa M.D., Diaz D. et al. Abnormal Distribution and Function of Circulating Monocytes and Enhanced Bacterial Translocation in Major Depressive Disorder. Front Psychiatry 2019; 10: 812. DOI: 10.3389/fpsyt.2019.00812

56. Meinitzer S., Baranyi A., Holasek S., Schnedl W.J., Zelzer S., Mangge H. et al. Sex-Specific Associations of Trimethylamine-N-Oxide and Zonulin with Signs of Depression in Carbohydrate Malabsorbers and Nonmalabsorbers. Dis Markers 2020; 2020: 7897240. DOI: 10.1155/2020/7897240

57. Özyurt G., Öztürk Y., Appak Y.Ç., Arslan F.D., Baran M., Karakoyun . et al. Increased zonulin is associated with hyperactivity and social dysfunctions in children with attention deficit hyperactivity disorder. Compr Psychiatry 2018; 87: 138–142. DOI: 10.1016/j.comppsych.2018.10.006.

58. Kovo M., Schreiber L., Elyashiv O., Ben-Haroush A., Abraham G., Bar J. Pregnancy outcome and placental findings in pregnancies complicated by fetal growth restriction with and without preeclampsia. Reprod Sci 2015; 22: 316–321. DOI: 10.1177/1933719114542024

59. Sturgeon C., Fasano A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers 2016; 4: e1251384. DOI: 10.1080/21688370.2016.1251384

60. Tarko A., Suchojad A., Michalec M., Majcherczyk M., Brzozowska A., Maruniak-Chudek I. Zonulin: A Potential Marker of Intestine Injury in Newborns. Dis Markers 2017; 2017: 2413437. DOI: 10.1155/2017/2413437

61. Mwape I., Bosomprah S., Mwaba J., Mwila-Kazimbaya K., Laban N.M., Chisenga C.C. et al. Immunogenicity of rotavirus vaccine (RotarixTM) in infants with environmental enteric dysfunction. PLoS One 2017; 12(12): e0187761. DOI: 10.1155/2017/2413437

62. Krawczyk M., Maciejewska D., Ryterska K., CzerwińkaRogowska M., Jamioł-Milc D., Skonieczna-Żydecka K., Milkiewicz P. Gut Permeability Might be Improved by Dietary Fiber in Individuals with Nonalcoholic Fatty Liver Disease (NAFLD) Undergoing Weight Reduction. Nutrients 2018; 10(11): E1793. DOI: 10.3390/nu10111793

63. Богданова Н.М., Хавкин А.И., Колобова О.Л. Перспективы использования ферментированных молочных продуктов у детей с первичной гиполактазией взрослого типа. Рос вестн перинатол и педиатр 2020; 65(3): 160–168. DOI: 10.21508/1027-4065-2020-65-3-160-168. (in Russ.)

64. Хавкин А.И., Федотова О.Б., Волынец Г.В., Кошкарова Ю.А., Пенкина Н.А., Комарова О.Н. Результаты проспективного сравнительного открытого рандомизированного исследования по изучению эффективности йогурта, обогащенного пребиотиками и пробиотиками, у детей раннего возраста, перенесших острую респираторную инфекцию. Вопросы детской диетологии 2019; 17(1): 29–37. DOI: 10.20953/1727-5784-2019-1-29-37


Рецензия

Для цитирования:


Хавкин А.И., Богданова Н.М., Новикова В.П. Биологическая роль зонулина и эффективность его использования в качестве биомаркера синдрома повышенной кишечной проницаемости. Российский вестник перинатологии и педиатрии. 2021;66(1):31-38. https://doi.org/10.21508/1027-4065-2021-66-1-31-38

For citation:


Khavkin A.I., Bogdanova N.M., Novikova V.P. Biological role of zonulin: a biomarker of increased intestinal permeability syndrome. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2021;66(1):31-38. (In Russ.) https://doi.org/10.21508/1027-4065-2021-66-1-31-38

Просмотров: 288


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)