Preview

Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics)

Advanced search

Limb-girdle muscular dystrophy type 2A (calpainopathy)

Abstract

The clinical presentation of progressive limb-girdle muscular dystrophy type 2A (LGMD2A) is due to loss of functionally active cal-pain-3, a skeletal muscle specific isoform of one of the calpain family proteins involved in the regulation of different tissue processes. The function of calpain-3 and the pathophysiological mechanism of LGMD2A are still not fully understood. The article discusses the features of the pathogenesis, clinical presentation, and diagnosis of LGMD2A and the possible administration of calpain-3 trans-genes as a specific therapy for this disease. Two clinical cases of patients with this condition are given.

About the Authors

T. I. Baranich
Research Clinical Institute of Pediatrics, N.I. Pirogov Russian National Research Medical University, Moscow; N.I. Pirogov Russian National Research Medical University, Moscow
Russian Federation


S. B. Artemyeva
Research Clinical Institute of Pediatrics, N.I. Pirogov Russian National Research Medical University, Moscow; N.I. Pirogov Russian National Research Medical University, Moscow
Russian Federation


N. V. Kleimenova
Research Clinical Institute of Pediatrics, N.I. Pirogov Russian National Research Medical University, Moscow; N.I. Pirogov Russian National Research Medical University, Moscow
Russian Federation


L. A. Khavkhun
Research Clinical Institute of Pediatrics, N.I. Pirogov Russian National Research Medical University, Moscow; N.I. Pirogov Russian National Research Medical University, Moscow
Russian Federation


D. V. VIodavets
Research Clinical Institute of Pediatrics, N.I. Pirogov Russian National Research Medical University, Moscow; N.I. Pirogov Russian National Research Medical University, Moscow
Russian Federation


D. O. Kazakov
Research Clinical Institute of Pediatrics, N.I. Pirogov Russian National Research Medical University, Moscow; N.I. Pirogov Russian National Research Medical University, Moscow
Russian Federation


P. A. Shatalov
Research Clinical Institute of Pediatrics, N.I. Pirogov Russian National Research Medical University, Moscow; N.I. Pirogov Russian National Research Medical University, Moscow
Russian Federation


E. B. Litvinova
Research Clinical Institute of Pediatrics, N.I. Pirogov Russian National Research Medical University, Moscow; N.I. Pirogov Russian National Research Medical University, Moscow
Russian Federation


I. V. Shulyakova
Research Clinical Institute of Pediatrics, N.I. Pirogov Russian National Research Medical University, Moscow; N.I. Pirogov Russian National Research Medical University, Moscow
Russian Federation


A. V. Brydun
Research Clinical Institute of Pediatrics, N.I. Pirogov Russian National Research Medical University, Moscow; N.I. Pirogov Russian National Research Medical University, Moscow
Russian Federation


V. V. Glinkina
Research Clinical Institute of Pediatrics, N.I. Pirogov Russian National Research Medical University, Moscow; N.I. Pirogov Russian National Research Medical University, Moscow
Russian Federation


V. S. Sukhorukov
Research Clinical Institute of Pediatrics, N.I. Pirogov Russian National Research Medical University, Moscow; N.I. Pirogov Russian National Research Medical University, Moscow
Russian Federation


References

1. Nadaj-Pakleza A.A., DorobekM., Nestorowicz, К. etal. Muscle pathology in 31 patients with calpain 3 gene mutations. Neural Neurochir Pol 2013; 47: 3: 214-222.

2. CottaA., Carvalho E., da-Cunha-Janior A.L. etal. Common recessive limb girdle muscular dystrophies differential diagnosis: why and how? Arq Neuropsiquiatr 2014; 72: 9: 721—734.

3. Angelini C, Nardetto L., Borsato C. et al. The clinical course of calpainopathy (LGMD2A) and dysferlinopathy (LGMD2B). Neurol Res 2010; 32: 41-46.

4. Fanin M., NascimbeniA.C, Fulizio L. et al. Loss of calpain-3 autocatalytic activity in LGMD2A patients with normal protein expression. Am J Pathol 2003; 163: 1929-1936.

5. Roudaut C, Le Roy F., Suel L. et al. Restriction of calpain3 expression to the skeletal muscle prevents cardiac toxicity and corrects pathology in a murine model of limb-girdle muscular dystrophy. Circulation 2013; 128: 10: 1094-1104.

6. Hashiguchi S., Adachi K, Inui T. et al. A clinicopatho-logical investigation of two autopsy cases of calpainopathy (LGMD2A). Brain Nerve 2014; 66: 9: 1097-1102.

7. Влодавец Д.В., Казаков Д. О. Диагностические возможности МРТ мышц при нервно-мышечных заболеваниях. Неврол журн 2014; 19: 3: 4-12. (Vlodavets D.V., Kaza-kov D.O. The diagnostic potential of muscle MRI in neuro-muscular diseases. Nevrol zhurn 2014; 19: 3: 4—12).

8. Suzuki K., Hata S., Kawabata Y, Sorimachi H. Structure, activation, and biology of calpain. Diabetes 2004; 53: Suppl 1:12—18.

9. Hauerslev S., Sveen M.L., Duno M. et al. Calpain 3 is important for muscle regeneration: evidence from patients with limb girdle muscular dystrophies. BMC Musculoskelet Disord 2012; 13: 43.

10. KramerovaL, KudryashovaE., Tidball J.G., Spencer M/. Null mutation of calpain 3 (p94) in mice causes abnormal sarco-mere formation in vivo and in vitro. Hum Mol Genet 2004; 13: 1373-1388.

11. OjimaK, Kawabata Y, Nakao H. et al. Dynamic distribution of muscle-specific calpain in mice has a key role in physical-stress adaptation and is impaired in muscular dystrophy. J Clin Invest 2010; 120:2672-2683.

12. Baghdiguian S., Martin M., Richard I. et al. Calpain 3 deficiency is associated with myonuclear apoptosis and profound perturbation of the IkappaB alpha/NF-kappaB pathway in limb-girdle muscular dystrophy type 2A. Nat Med 1999; 5: 503-511.

13. Schmidt W.M., Uddin M.H., Dysek S. et al. DNA Damage, Somatic Aneuploidy, and Malignant Sarcoma Susceptibility in Muscular Dystrophies. PLoS Genet 2011; 7: 4: el002042."

14. BaumeisterS.K, Todorovic S., Mili -Rasi V. et al. Eosinophilic myositis as presenting symptom in gamma-sarcoglycanopa-thy. Neuromuscul Disord 2009; 19: 167-171.

15. Weinstock A., Green C, Cohen B.H. et al. Becker muscular dystrophy presenting as eosinophilic inflammatory myopathy in an infant. J Child Neurol 1997; 12: 146-147.

16. CantariniL., Volpi N., CarbottiP. et al. Eosinophilia-associat-ed muscle disorders: an immunohistological study with tissue localization of major basic protein in distinct clinicopatho-logical forms. J Clin Pathol 2009; 62: 442-447.

17. Schroder Т., Fuchss J., Schneider I. et al. Eosinophils in hereditary and inflammatory myopathies. Acta Myol 2013; 32: 3: 148-153.

18. Kramerova I., Kudryashova E., Wu B. et al. Mitochondrial abnormalities, energy deficit and oxidative stress are features of calpain 3 deficiency in skeletal muscle. Hum Mol Genet 2009; 18: 17: 3194-3205.

19. Spencer M.J., GuyonJ.R., Sorimachi H. etal. Stable expression of calpain 3 from a muscle transgene in vivo: immature muscle in transgenic mice suggests a role for calpain 3 in muscle maturation. Proc Natl Acad Sci USA 2002; 99: 8874-8879.

20. Hayashi C, Ono Y, Doi N. et al. Multiple molecular interactions implicate the connectin/titin N2A region as a modulating scaffold for p94/calpain 3 activity in skeletal muscle. J Biol Chem2008; 283: 14801-14814.

21. Duguez S., Bartoli M., Richard I. Calpain 3: a key regulator of the sarcomere? FEBS J 2006; 273: 3427-3436.

22. Beckmann J.S., Spencer M. Calpain 3, the "gatekeeper" of proper sarcomere assembly, turnover and maintenance. Neuromuscul Disord 2008; 18: 913-921.


Review

For citations:


Baranich T.I., Artemyeva S.B., Kleimenova N.V., Khavkhun L.A., VIodavets D.V., Kazakov D.O., Shatalov P.A., Litvinova E.B., Shulyakova I.V., Brydun A.V., Glinkina V.V., Sukhorukov V.S. Limb-girdle muscular dystrophy type 2A (calpainopathy). Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2015;60(4):69-74. (In Russ.)

Views: 1249


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)