Preview

Российский вестник перинатологии и педиатрии

Расширенный поиск

Фенотипическая вариабельность и варианты-модификаторы у детей с наследственными заболеваниями сердца

https://doi.org/10.21508/1027-4065-2021-66-3-12-19

Полный текст:

Аннотация

Несмотря на достигнутые в последние десятилетия успехи в области поиска причин моногенных заболеваний человека, существует огромный пробел в понимании молекулярных причин фенотипической вариабельности. В настоящее время становится очевидным, что зачастую патогенный генетический вариант действует не в одиночку, а вместе с другими генетическими и негенетическими факторами, которые могут уменьшать или, наоборот, усугублять тяжесть заболевания. Таким образом, чтобы по-настоящему понять болезнь, необходимо учитывать всю совокупность механизмов, приводящих к результирующему фенотипу. В этой работе мы рассматриваем текущее состояние дел в области идентификации генетических и негенетических модификаторов фенотипа редких моногенных сердечно-сосудистых заболеваний.

Об авторах

Н. В. Щербакова
ОСП «Научно-исследовательский клинический институт педиатрии им. академика Ю.Е. Вельтищева» ФГАОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России
Россия

Щербакова Наталья Владимировна – зав. лабораторией молекулярной и биохимической диагностики, врач-кардиолог консультативно-диагностического отделения

125412 Москва, ул. Талдомская, д. 2 



А. Б. Жиронкина
ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия

Жиронкина Анна Борисовна – студентка VI курса педиатрического факультета 

117997 Москва, ул. Островитянова, д. 1 



В. Ю. Воинова
ОСП «Научно-исследовательский клинический институт педиатрии им. академика Ю.Е. Вельтищева» ФГАОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России
Россия

Воинова Виктория Юрьевна – д.м.н., зам. дир. по трансляционной медицине, глав. науч. сотр. отдела клинической генетики

125412 Москва, ул. Талдомская, д. 2 



Р. А. Ильдарова
ОСП «Научно-исследовательский клинический институт педиатрии им. академика Ю.Е. Вельтищева» ФГАОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России
Россия

Ильдарова Рукижат Абдул-Гафуровна – к.м.н., ст. науч. сотр. отдела детской аритмологии и кардиологии 

125412 Москва, ул. Талдомская, д. 2 



М. А. Школьникова
ОСП «Научно-исследовательский клинический институт педиатрии им. академика Ю.Е. Вельтищева» ФГАОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России
Россия

Школьникова Мария Александровна – д.м.н., проф., науч. рук.

125412 Москва, ул. Талдомская, д. 2 



Список литературы

1. Wright C.F., FitzPatrick D.R., Firth H.V. Paediatric genomics: diagnosing rare disease in children. Nat Rev Genet. 2018; 19: 253–268. DOI: 10.1038/nrg.2017.116

2. Boycott K.M., Rath A., Chong J.X., Hartley T., Alkuraya F.S., Baynam G. et al. International Cooperation to Enable the Diagnosis of All Rare Genetic Diseases. Am J Hum Genet. 2017; 100: 695–705. DOI: 10.1016/j.ajhg.2017.04.003

3. Chong J.X., Buckingham K.J., Jhangiani S.N., Boehm C., Sobreira N., Smith J.D. et al. The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities. Am J Hum Genet. 2015; 97: 199–215. DOI: 10.1016/j.ajhg.2015.06.009

4. Щербакова Н.В., Воинова В.Ю., Школьникова М.А. Генетика и сердце: основания для внедрения генетического тестирования в клиническую практику. Педиатрия. 2020; 99 (3): 8–15. [Shcherbakova N.V., Voinova V.Yu., Shkolnikova M.A. Genetics and the heart: The basis for introducing genetic testing into clinical practice. Pediatriya Zhurnal Im GN Speranskogo. 2020; 99: 8–15. DOI: 10.24110/0031-403X-2020-99-3-8-15 (in Russ.)]

5. Walsh R., Tadros R., Bezzina C.R. When genetic burden reaches threshold. Eur Heart J. 2020; 41: 3849–55. DOI: 10.1093/eurheartj/ehaa269

6. Oon Y.Y., Koh K.T., Khaw C.S., Mohd Amin N.H., Ong T.K. Phenotypic variation among siblings with arrhythmogenic right ventricular cardiomyopathy. Med J Malaysia. 2019; 74: 328–330

7. Kose M.D., Canda E., Kağnıcı M., Uçar S.K., Onay H., Yıldırım Sozmen E. et al. Coexistence of Gaucher Disease and severe congenital neutropenia. Blood Cells Mol Dis. 2019; 76: 1–6. DOI: 10.1016/j.bcmd.2018.07.001

8. Davidson B.A., Hassan S., Garcia E.J., Tayebi N., Sidransky E. Exploring genetic modifiers of Gaucher disease: The next horizon. Hum Mutat. 2018; 39: 1739–1751. DOI: 10.1002/humu.23611

9. Rudnik-Schöneborn S., Barisić N., Eggermann K., Ortiz Brüchle N., Grđan P., Zerres K. Distally pronounced infantile spinal muscular atrophy with severe axonal and demyelinating neuropathy associated with the S230L mutation of SMN1. Neuromuscul Disord. 2016; 26: 132–135. DOI: 10.1016/j.nmd.2015.12.003

10. Missaglia S., Tasca E., Angelini C., Moro L., Tavian D. Novel missense mutations in PNPLA2 causing late onset and clinical heterogeneity of neutral lipid storage disease with myopathy in three siblings. Mol Genet Metab. 2015; 115: 110–117. DOI: 10.1016/j.ymgme.2015.05.001

11. Posey J.E., O’Donnell-Luria A.H., Chong J.X., Harel T., Jhangiani S.N., Coban Akdemir Z.H. et al. Insights into genetics, human biology and disease gleaned from family based genomic studies. Genet Med. 2019; 21: 798–812. DOI: 10.1038/s41436-018-0408-7

12. Zareba W., Moss A.J., Locati E.H., Lehmann M.H., Peterson D.R., Hall W.J. et al. Modulating effects of age and gender on the clinical course of long QT syndrome by genotype. J Am Coll Cardiol. 2003; 42: 103–109. DOI: 10.1016/s0735-1097(03)00554-0

13. Austin E.D., Loyd J.E., Phillips J.A. 3rd. Genetics of pulmonary arterial hypertension. Semin Respir Crit Care Med 2009; 30: 386–398. DOI: 10.1055/s-0029-1233308

14. van der Werf C., Nederend I., Hofman N., van Geloven N., Ebink C., Frohn-Mulder I.M.E. et al. Familial evaluation in catecholaminergic polymorphic ventricular tachycardia: disease penetrance and expression in cardiac ryanodine receptor mutation-carrying relatives. Circ Arrhythm Electrophysiol. 2012; 5: 748–756. DOI: 10.1161/CIRCEP.112.970517

15. Schwartz P.J., Crotti L., George A.L.J. Modifier genes for sudden cardiac death. Eur Heart J. 2018; 39: 3925–3931. DOI: 10.1093/eurheartj/ehy502

16. Turner H., Jackson L. Evidence for penetrance in patients without a family history of disease: a systematic review. Eur J Hum Genet. 2020; 28: 539–550. DOI: 10.1038/s41431-019-0556-5

17. Tuke M.A., Ruth K.S., Wood A.R., Beaumont R.N., Tyrrell J., Jones S.E. et al. Mosaic Turner syndrome shows reduced penetrance in an adult population study. Genet Med. 2019; 21: 877–886. DOI: 10.1038/s41436-018-0271-6

18. Nollet E.E., Westenbrink B.D., de Boer R.A., Kuster D.W.D., van der Velden J. Unraveling the Genotype-Phenotype Relationship in Hypertrophic Cardiomyopathy: Obesity-Related Cardiac Defects as a Major Disease Modifier. J Am Heart Assoc. 2020; 9: e018641. DOI: 10.1161/JAHA.120.018641

19. Weeke P.E., Kellemann J.S., Jespersen C.B., Theilade J., Kanters J.K., Hansen M.S. et al. Long-term proarrhythmic pharmacotherapy among patients with congenital long QT syndrome and risk of arrhythmia and mortality. Eur Heart J. 2019; 40: 3110–3117. DOI: 10.1093/eurheartj/ehz228

20. Lorenzini M., Norrish G., Field E., Ochoa J.P., Cicerchia M., Akhtar M.M. et al. Penetrance of Hypertrophic Cardiomyopathy in Sarcomere Protein Mutation Carriers. J Am Coll Cardiol. 2020; 76: 550–559. DOI: 10.1016/j.jacc.2020.06.011

21. Hey T.M., Rasmussen T.B., Madsen T., Aagaard M.M., Harbo M., Mølgaard H. et al. Pathogenic RBM20-Variants Are Associated With a Severe Disease Expression in Male Patients With Dilated Cardiomyopathy. Circ Heart Fail. 2019; 12: e005700. DOI: 10.1161/CIRCHEARTFAILURE.118.005700

22. Van Rijsingen I.A.W., Nannenberg E.A., Arbustini E., Elliott P.M., Mogensen J., Hermans-van Ast J.F. et al. Gender-specific differences in major cardiac events and mortality in lamin A/C mutation carriers. Eur J Heart Fail. 2013; 15: 376–384. DOI: 10.1093/eurjhf/hfs191

23. Page S.P., Kounas S., Syrris P., Christiansen M., Frank-Hansen R., Andersen P.S. et al. Cardiac myosin binding protein-C mutations in families with hypertrophic cardiomyopathy: disease expression in relation to age, gender, and long term outcome. Circ Cardiovasc Genet. 2012; 5: 156–166. DOI: 10.1161/CIRCGENETICS.111.960831

24. Coll M., Pérez-Serra A., Mates J., Del Olmo B., Puigmulé M., Fernandez-Falgueras A. et al. Incomplete Penetrance and Variable Expressivity: Hallmarks in Channelopathies Associated with Sudden Cardiac Death. Biology (Basel). 2017; 7: 3. DOI: 10.3390/biology7010003

25. Gifford C.A., Ranade S.S., Samarakoon R., Salunga H.T., de Soysa T.Y., Huang Y. et al. Oligogenic inheritance of a human heart disease involving a genetic modifier. Science. 2019; 364: 865–870. DOI: 10.1126/science.aat5056

26. Kuzmin E., VanderSluis B., Wang W., Tan G., Deshpande R., Chen Y. et al. Systematic analysis of complex genetic interactions. Science. 2018; 360: eaao1729. DOI: 10.1126/science.aao1729

27. Lee I., Lehner B., Vavouri T., Shin J., Fraser A.G., Marcotte E.M. Predicting genetic modifier loci using functional gene networks. Genome Res. 2010; 20: 1143–1153. DOI: 10.1101/gr.102749.109

28. Uppu S., Krishna A., Gopalan R.P. A Review on Methods for Detecting SNP Interactions in High-Dimensional Genomic Data. IEEE/ACM Trans Comput Biol Bioinforma. 2018; 15: 599–612. DOI: 10.1109/TCBB.2016.2635125

29. Madhukar N.S., Elemento O., Pandey G. Prediction of Genetic Interactions Using Machine Learning and Network Properties. Front Bioeng Biotechnol. 2015; 3: 172. DOI: 10.3389/fbioe.2015.00172

30. Veitia R.A., Caburet S., Birchler J.A. Mechanisms of Mendelian dominance. Clin Genet. 2018; 93: 419–428. DOI: 10.1111/cge.13107

31. Aubart M., Gazal S., Arnaud P., Benarroch L., Gross M-S., Buratti J. et al. Association of modifiers and other genetic factors explain Marfan syndrome clinical variability. Eur J Hum Genet. 2018; 26: 1759–1772. DOI: 10.1038/s41431-018-0164-9

32. Maroilley T., Tarailo-Graovac M. Uncovering Missing Heritability in Rare Diseases. Genes (Basel). 2019; 10: 275. DOI: 10.3390/genes10040275

33. Senol-Cosar O., Schmidt R.J., Qian E., Hoskinson D., Mason-Suares H., Funke B. et al. Considerations for clinical curation, classification, and reporting of low-penetrance and low effect size variants associated with disease risk. Genet Med. 2019; 21: 2765–2773. DOI: 10.1038/s41436-019-0560-8

34. Arking D.E., Pulit S.L., Crotti L., van der Harst P., Munroe P.B., Koopmann T.T. et al. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nat Genet. 2014; 46: 826–836. DOI: 10.1038/ng.3014

35. Lahtinen A.M., Marjamaa A., Swan H., Kontula K. KCNE1 D85N polymorphism--a sex-specific modifier in type 1 long QT syndrome? BMC Med Genet. 2011; 12: 11. DOI: 10.1186/1471-2350-12-11

36. Nishio Y., Makiyama T., Itoh H., Sakaguchi T., Ohno S., Gong Y-Z. et al. D85N, a KCNE1 polymorphism, is a disease-causing gene variant in long QT syndrome. J Am Coll Cardiol. 2009; 54: 812–819. DOI: 10.1016/j.jacc.2009.06.005

37. Lane C.M., Giudicessi J.R., Ye D., Tester D.J., Rohatgi R.K., Bos J.M. et al. Long QT syndrome type 5-Lite: Defining the clinical phenotype associated with the potentially proarrhythmic p.Asp85Asn-KCNE1 common genetic variant. Hear Rhythm. 2018; 15: 1223–1230. DOI: 10.1016/j.hrthm.2018.03.038

38. Amin A.S., Giudicessi J.R., Tijsen A.J., Spanjaart A.M., Reckman Y.J., Klemens C.A. et al. Variants in the 3’ untranslated region of the KCNQ1-encoded Kv7.1 potassium channel modify disease severity in patients with type 1 long QT syndrome in an allele-specific manner. Eur Heart J. 2012; 33: 714–723. DOI: 10.1093/eurheartj/ehr473

39. Rahit K.M.T.H., Tarailo-Graovac M. Genetic Modifiers and Rare Mendelian Disease. Genes (Basel). 2020; 11: 239. DOI: 10.3390/genes11030239

40. Lappalainen T., Scott A.J., Brandt M., Hall I.M. Genomic Analysis in the Age of Human Genome Sequencing. Cell. 2019; 177: 70–84. DOI: 10.1016/j.cell.2019.02.032

41. Scalco R.S., Morrow J.M., Booth S., Chatfield S., Godfrey R., Quinlivan R. Misdiagnosis is an important factor for diagnostic delay in McArdle disease. Neuromuscul Disord. 2017; 27: 852–865. DOI: 10.1016/j.nmd.2017.04.013

42. Graf J., Schwitalla J.C., Albrecht P., Veltkamp R., Berlit P., Hartung H-P. et al. Misdiagnoses and delay of diagnoses in Moyamoya angiopathy-a large Caucasian case series. J Neurol. 2019; 266: 1153–1159. DOI: 10.1007/s00415-019-09245-9

43. Van Leeuwen J., Pons C., Boone C., Andrews B.J. Mechanisms of suppression: The wiring of genetic resilience. Bioessays. 2017; 39: 10.1002/bies.201700042. DOI: 10.1002/bies.201700042

44. Visscher P.M., Wray N.R., Zhang Q., Sklar P., McCarthy M.I., Brown M.A. et al. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am J Hum Genet. 2017; 101: 5–22. DOI: 10.1016/j.ajhg.2017.06.005

45. Kolder I.C.R.M., Tanck M.W.T., Postema P.G., Barc J., Sinner M.F., Zumhagen S. et al. Analysis for Genetic Modifiers of Disease Severity in Patients With Long-QT Syndrome Type 2. Circ Cardiovasc Genet. 2015; 8: 447–456. DOI: 10.1161/CIRCGENETICS.114.000785

46. Lahrouchi N., Tadros R., Crotti L., Mizusawa Y., Postema P.G., Beekman L. et al. Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome. Circulation 2020; 142: 324– 338. DOI: 10.1161/CIRCULATIONAHA.120.045956

47. Esslinger U., Garnier S., Korniat A., Proust C., Kararigas G., Müller-Nurasyid M. et al. Exome-wide association study reveals novel susceptibility genes to sporadic dilated cardiomyopathy. PLoS One. 2017; 12: e0172995. DOI: 10.1371/journal.pone.0172995

48. Aung N., Vargas J.D., Yang C., Cabrera C.P., Warren H.R., Fung K. et al. Genome-Wide Analysis of Left Ventricular Image-Derived Phenotypes Identifies Fourteen Loci Associated With Cardiac Morphogenesis and Heart Failure Development. Circulation. 2019; 140: 1318–1330. DOI: 10.1161/CIRCULATIONAHA.119.041161

49. Tadros R., Francis C., Xu X., Vermeer A.M.C., Harper A.R., Huurman R. et al. Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect. Nat Genet. 2021; 53: 128–134. DOI: 10.1038/s41588-020-00762-2

50. Wijeyeratne Y.D., Tanck M.W., Mizusawa Y., Batchvarov V., Barc J., Crotti L. et al. SCN5A Mutation Type and a Genetic Risk Score Associate Variably With Brugada Syndrome Phenotype in SCN5A Families. Circ Genomic Precis Med. 2020; 13: e002911. DOI: 10.1161/CIRCGEN.120.002911

51. Khera A.V., Chaffin M., Aragam K.G., Haas M.E., Roselli C., Choi S.H. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018; 50: 1219–1224. DOI: 10.1038/s41588-018-0183-z


Для цитирования:


Щербакова Н.В., Жиронкина А.Б., Воинова В.Ю., Ильдарова Р.А., Школьникова М.А. Фенотипическая вариабельность и варианты-модификаторы у детей с наследственными заболеваниями сердца. Российский вестник перинатологии и педиатрии. 2021;66(3):12-19. https://doi.org/10.21508/1027-4065-2021-66-3-12-19

For citation:


Shcherbakova N.V., Zhironkina A.B., Voinova V.Yu., Ildarova R.A., Shkolnikova M.A. Phenotypic variability and modifier variants in children with hereditary heart diseases. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2021;66(3):12-19. (In Russ.) https://doi.org/10.21508/1027-4065-2021-66-3-12-19

Просмотров: 290


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)