Preview

Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics)

Advanced search

Barth syndrome

Abstract

Barth syndrome is an X-linked recessive disease characterized by cardiomyopathy, skeletal myopathy, growth retardation, neutro-penia, and 3-methylglutaconic aciduria. The Barth syndrome was first described as a mitochondrial disease leading to neutropenia and skeletal and cardiac myopathy. A deeper insight into the pathogenesis of the disease is associated with the development of its main genetic mechanisms. Mutations in the TAZ gene (Xq28) give rise to a loss of its function and to abnormalities in the cardiolipin structure and are responsible for the phenotype of Barth syndrome. Patients are susceptible to life-threatening bacterial infection and sepsis due to neutropenia; evolving heart failure is caused by cardiomyopathy, non-compact myocardium syndrome. Patient management tactics have recently undergone changes, resulting in longer survival.

About the Authors

I. V. Leontyeva
Research Clinical Institute of Pediatrics, N.I. Pirogov Russian National Research Medical University, Moscow
Russian Federation


Yu. M. Belozerov
Research Clinical Institute of Pediatrics, N.I. Pirogov Russian National Research Medical University, Moscow
Russian Federation


E. A. Nikolaeva
Research Clinical Institute of Pediatrics, N.I. Pirogov Russian National Research Medical University, Moscow
Russian Federation


References

1. Barth P.G., Scholte H.R., Berden J.A. et al. An X-linked mi-tochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. JNeural Sci 1983; 62: 327—355. 2. Neustein H.B., Lurie P.R., Dahms В., Takahashi M. An X-linked recessive cardiomyopathy with abnormal mitochondria. Pediatrics 1979; 64: 24-29.

2. Kelley R.I., Cheatham J.P., Clark B.J. et al. X-linked dilated cardiomyopathy with neutropenia, growth retardation, and 3-methylglutaconic aciduria. J Pediat 1991; 119: 738-747.

3. SpencerC.T., Bryant RM., Day J. etal. Cardiac and clinical phe-notype in Barth syndrome. Pediatrics 2006; 118: E337-E346.

4. Steward C.G., Newbury-Ecob R.A., Hastings R. et al. Barth syndrome: an X-linked cause of fetal cardiomyopathy and stillbirth. PrenatDiagn2010; 30: 970-976.

5. Vreken P., Valianpour F, Nijtmans E.G. et al. Defective remodeling of cardiolipin and phosphatidylglycerol in Barth syndrome. Biochem Biophys Res Comm 2000; 279: 378-382. 7. Kulik W., van Lenthe H, Stet F.S. et al. Bloodspot assay using HPLC-tandem mass spectrometry for detection of Barth syndrome. Clin Chem 2008; 54: 371-378.

6. Barth Syndrome Foundation Website. Frequently Asked Questions. 2006; http://www.barthsyndrome.org.

7. Cantlay A.M., Shokrollahi K., Allen J. T. et al. Genetic analysis of the G4.5 gene in families with suspected Barth syndrome. J Pediat 1999; 135: 311-315.

8. Ferreira C, Thompson R., Vernon H. Barth syndrome. In: Pagon R.A., Adam M.P., Ardinger H.H. et al. Source-GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle, 2014; http://www.ncbi.nlm.nih.gov/books/ NBK247162/

9. BioneS., Dadamo P., Maestrini E. et al. A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nature Genet 1996; 12: 385-389.

10. Ades L.C., Gedeon A.K., Wilson M.J. et al. Barth syndrome — clinical features and confirmation of gene localization to distal Xq28. Am J Med Genet 1993; 45: 327-334.

11. Gonzalez I.L. Human tafazzin (TAZ) gene mutation and variation database. Science and Research section. 2012; http:// www .barthsyndrome.org

12. RigaudC, LebreA., Touraine R. et al. Natural history of Barth syndrome: A national cohort study of 22 patients. Orphanet J Rare Dis 2013; 8: 70. doi: 10.1186/1750-1172-8-70. 15. Singh H.R., Yang Z, Siddiqui S. et al. A novel Alu-mediated Xq28 microdeletion ablates TAZ and partially deletes DNL1L in a patient with Barth syndrome. Am J Med Genet A 2009; 149A: 1082-1085.

13. Gonzalez, I.L. Barth syndrome: TAZ gene mutations, mRNAs, and evolution. Am J Med Genet A 2005; 134A: 409-414.

14. Ronvelia D., Greenwood J., Platt J. et al. Intrafamilial variability for novel TAZ gene mutation: Barth Syndrome with dilated cardiomyopathy and heart failure in an infant and left ventricular noncompaction in his great-uncle. Mol Genet Metab 2012; 107: 3: 428-432.

15. Chang В., Momoi N, Shan L. et al. Gonadal mosaicism of a TAZ (G4.5) mutation in a Japanese family with Barth syn-

16. drome and left ventricular noncompaction. Mol Genet Metab 2010; 100: 198-203.

17. Cosson L., Toutain A., Simard G. et al. Barth syndrome in a female patient. Mol Genet Metab 2012; 106: 115-120.

18. Xu Y, Sutachan J.J., Plesken H. etal. Characterization of lym-phoblast mitochondria from patients with Barth syndrome. Lab Investig 2005; 85: 823-830.

19. Acehan £>., MalhotraA., Xu Y etal. Cardiolipin affects the su-pramolecular organization of ATP synthase in mitochondria. Biophys J2011; 100:2184-2192.

20. Valianpour F., Mitsakos V., Schlemmer D. et al. Monolysocar-diolipins accumulate in Barth syndrome but do not lead to enhanced apoptosis. J Lipid Res 2005; 46: 1182-1195.

21. van Werkhoven M.A., Thorburn D.R., Gedeon A.K., Pitt J.J. Monolysocardiolipin in cultured fibroblasts is a sensitive and specific marker for Barth Syndrome. J Lipid Res 2006; 47: 2346-2351.

22. HoutkooperR.H., RodenburgR.J., ThielsC. etal. Cardiolipin and monolysocardiolipin analysis in fibroblasts, lymphocytes, and tissues using high-performance liquid chromatography-mass spectrometry as a diagnostic test for Barth syndrome. Anal Biochem 2009; 387: 230-237.

23. Koshkin V., Greenberg M.L. Cardiolipin prevents rate-dependent uncoupling and provides osmotic stability in yeast mitochondria. Biochem J 2002; 364: 317-322.

24. SchlameM., Rua £>., Greenberg M.L. The biosynthesis and functional role of cardiolipin. Prog Lipid Res 2000; 39: 257-288.

25. GonzalvezF, Gottlieb E. Cardiolipin: setting the beat of apoptosis. Apoptosis 2007; 12: 877-885.

26. Klingenberg M. Cardiolipin and mitochondrial carriers. Bio-chim Biophys Acta 2009; 1788: 2048-2058.

27. Acehan D., Khuchua Z., Houtkooper R.H. et al. Distinct effects of tafazzin deletion in differentiated and undifferentiated mitochondria. Mitochondrion 2009; 9: 86-95.

28. WhitedK., Baile M.G., Currier P., Claypool S.M. Seven functional classes of Barth syndrome mutation. Hum Mol Genet 2013; 22: 483-492.

29. Acehan £>., Vaz,F., Houtkooper R.H. et al. Cardiac and skeletal muscle defects in a mouse model of human Barth syndrome. J Biol Chem 2011; 286: 899-908.

30. Roberts A.E., Nixon C, Steward C.G. etal. The Barth syndrome registry: distinguishing disease characteristics and growth data from a longitudinal study. Am J Med Genet A 2012; 158A: 2726-2732.

31. SpencerC.T., Byrne B.J., Bryant R.M. et al. Impaired cardiac reserve and severely diminished skeletal muscle 0(2) utilization mediate exercise intolerance in Barth syndrome. Am J Physiol Heart Circ Physiol 2011; 301: H2122-H2129.

32. Николаева Е.А., Леонтьева И.В., Семенов В.А. и др. Синдром Барта. Рос вестн перинатол и педиат 1998; 43: 5: 37— 42. (Nikolaeva E.A., Leont'eva I.V., Semenov V.A. et al. Barth syndrome. Ros vestnperinatal ipediat 1998; 43: 5: 37—42.)

33. Nugent A.W., Daubeney P.E., Chondros P. et al. The epidemiology of childhood cardiomyopathy in Australia. N Engl J Med 2003; 348: 1639-1646.


Review

For citations:


Leontyeva I.V., Belozerov Yu.M., Nikolaeva E.A. Barth syndrome. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2015;60(5):33-41. (In Russ.)

Views: 2352


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)