Preview

Российский вестник перинатологии и педиатрии

Расширенный поиск

Хронопатологические аспекты расстройств сна и когнитивных функций у детей с нарушениями зрения

Полный текст:

Аннотация

Наиболее значимый и заметный ритмический феномен, наблюдаемый в организме человека, - ритм сна-бодрствования и связанные с ним изменения физических и психических процессов. Важнейшими являются так называемые циркадиан-ные ритмы, которые меняются с периодичностью приблизительно 24 ч. Главным циркадианным пейсмекером у млекопитающих является супрахиазматическое ядро гипоталамуса, и из всех стимулов, получаемых этой структурой, максимально изучены световые импульсы. Световые импульсы, не связанные со зрительным восприятием, служат наиболее важными синхронизаторами циркадианных ритмов. У детей с нарушениями зрения отсутствует адекватная световая стимуляция, и, как следствие, с высокой вероятностью формируются нарушения циркадианных ритмов, усугубляются когнитивные нарушения. Рассматриваются важнейшие варианты расстройств сна у детей с нарушениями зрения, обсуждаются их негативные последствия для когнитивных функций ребенка, намечаются возможные подходы к коррекции.

Об авторе

И. А. Кельмансон
Институт специальной педагогики и психологии Международного университета семьи и ребенка им. Рауля Валленберга, Санкт-Петербург
Россия


Список литературы

1. Хильдебрандт Г., Мозер М., Лехофер М. Хронобиология и хрономедицина: Пер. с нем. М: Арнебия 2006; 144. (Hildebrandt G., Moser M., Lehofer M. Chronobiology and chronomedicine: Translated from German. Moscow: Arnebia 2006; 144.)

2. Swaab D.F. The human hypothalamus : basic and clinical aspects. 1st ed. Amsterdam; Boston: Elsevier, 2003; 1:476; 2: 588.

3. Barinaga M. Circadian clock. How the brain's clock gets daily enlightenment. Science 2002; 295: 5557: 955-957.

4. Dijk D.J., Archer S.N. Light, sleep, and circadian rhythms:

5. together again. PLoS biology 2009; 7: 6: el000145.

6. Thapan K., Arendt J., SkeneD.J. An action spectrum for mela-tonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol 2001; 535: Pt 1: 261-267.

7. ReidKJ., Zee P.C. Circadian rhythm disorders. SeminNeurol 2009; 29: 4: 393-405.

8. Khalsa S.B., Jewett M.E., Cajochen C, Czeisler C.A. A phase response curve to single bright light pulses in human subjects. J Physiol 2003; 549: Pt 3: 945-952.

9. Valdez P., Ramirez С., Garcia A. Orcadian rhythms in cognitive pprocesses: implications for school learning. Mind Brain Educ 2014; 8: 4: 161-168.

10. BergerA., Posner M.I. Pathologies of brain attentional networks. Neuroscience andbiobehavioral reviews 2000; 24: 1: 3—5.

11. Sorter M., Givens В., Bruno J.P. The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain research reviews 2001; 35: 2: 146-160.

12. Carrier J., Monk Т.Н. Orcadian rhythms of performance: new trends. Chronobiology international 2000; 17: 6: 719—732.

13. Кельмансон И.А. Интеллектуальные нарушения и расстройства сна у детей. Врач 2015; 1: 2—5. (Kelmanson LA. Inttelectual disorders and sleep dirturbances in children. Vrach2015; 1:2-5.)

14. Кельмансон И.А. Эмоциональные расстройства и расстройства поведения у детей, связанные с нарушениями сна. Рос вестн перинатол и педиат 2014; 59: 4: 32—40. (Kelmanson LA. Emotional disorders and behavioural disorders related to sleep disturbances in children. Ros vestn peri-natol ipediat 2014; 59: 4: 32-40.)

15. Rogers N.L., Dorrian J., Binges D.F. Sleep, waking and neu-robehavioural performance. Frontiers in bioscience 2003; 8: 1056-1067.

16. Wright K, Hull J.T., Hughes R.J. et al. Sleep and wakefulness out of phase with internal biological time impairs learning in humans. J Cognit Neurosci 2006; 18: 4: 508-521.

17. SaperC.B., Chou T.C., Scammell Т.Е. The sleep switch: hypo-thalamic control of sleep and wakefulness. Trends in neurosci-ences 2001; 24: 12: 726-731.

18. Deurveilher S., Semba К Indirect projections from the supra-chiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neurosci 2005; 130: 1: 165-183.

19. Tu J., Jhou T.C., SaperC.B. Identification of wake-active do-paminergic neurons in the ventral periaqueductal gray matter. J Neurosci 2006; 26: 1: 193-202.

20. Steriade M. The corticothalamic system in sleep. Frontiers in bioscience 2003; 8: d878-899.

21. Aston-Jones G. Brain structures and receptors involved in alertness. Sleep medicine 2005; 6: Suppl 1: S3—7.

22. Larkin J.E., Yokogawa T, Heller H.С. et al. Homeostatic regulation of sleep in arrhythmic Siberian hamsters. Am J Physiol Regulat Integrat Comparat Physiol 2004; 287: 1: R104-111.

23. Dijk D.J., Czeisler C.A. Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. Neurosci letters 1994; 166: 1: 63—68.

24. Folkard S., Totterdell P., Minors D., Waterhouse J. Dissecting circadian performance rhythms: implications for shiftwork. Ergonomics 1993; 36: 1-3: 283-288.

25. Eckel-Mahan K.L., Storm D.R. Circadian rhythms and memory: not so simple as cogs and gears. EMBO reports 2009; 10: 6:584-591.

26. Swaab D.F. We are our brains : a neurobiography of the brain, from the womb to Alzheimer's. New York: Spiegel&Grau, 2014; 417.

27. Belichenko P.V., Masliah E., Kleschevnikov A.M. et al. Syn-aptic structural abnormalities in the Ts65Dn mouse model of Down Syndrome. J Comparat Neurol 2004; 480: 3: 281-298.

28. Fernandez F, Morishita W., Zuniga E. et al. Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nat Neurosci 2007; 10: 4: 411-413.

29. Ruby N.F., Hwang C.E., Wessells C. et al. Hippocampal-de-pendent learning requires a functional circadian system. Proc NatAcadSci USA 2008; 105:40: 15593-15598.

30. Cohen R.A., Barnes H.J., Jenkins M., Albers H.E. Disruption of short-duration timing associated with damage to the supra-chiasmatic region of the hypothalamus. Neurology 1997; 48: 6:1533-1539.

31. Ohta H., Yamazaki S., McMahon D.G. Constant light desyn-chronizes mammalian clock neurons. Nat Neurosci 2005; 8: 3: 267-269.

32. Devon B.D., Goad E.H., Petri HE. et al. Circadian phase-shifted rats show normal acquisition but impaired long-term retention of place information in the water task. Neurobiol Learn Mem 2001; 75: 1:51-62.

33. Lament E.W., Robinson В., Stewart J., Amir S. The central and basolateral nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the clock protein Period2. Proc Nat AcadSci USA 2005; 102: 11:4180-4184.

34. JilgA., Lesny S., PeruzkiN. et al. Temporal dynamics of mouse hippocampal clock gene expression support memory processing. Hippocampus 2010; 20: 3: 377-388.

35. Hampp G., Albrecht U. The circadian clock and mood-related behavior. Communicat Integrat Biol 2008; 1: 1: 1—3.

36. Van derZee E.A., Havekes R., BarfR.P. et al. Circadian time-place learning in mice depends on Cry genes. Curr Biol 2008; 18: 11: 844-848.

37. Guilding C, Piggins H.D. Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain? Eur J Neurosci 2007; 25: 11:3195-3216.

38. Hampp G., Ripperger J.A., Houben T. et al. Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood. Curr Biol 2008; 18: 9: 678-683.

39. Gonzalez M.M., Aston-Jones G. Light deprivation damages monoamine neurons and produces a depressive behavioral phenotype in rats. Proc Nat Acad Sci USA 2008; 105: 12: 4898-4903.

40. Monje F.J., Cabatic M., Divisch I. et al. Constant darkness induces IL-6-dependent depression-like behavior through the NF-kappaB signaling pathway. J Neurosci 2011; 31: 25: 9075-9083.

41. Lockley S.W., Dijk D.J., Kosti O. et al. Alertness, mood and performance rhythm disturbances associated with circadian sleep disorders in the blind. J Sleep Res 2008; 17: 2: 207-216.

42. American Academy of Sleep Medicine. The international classification of sleep disorders : diagnostic and coding manual. 2nd ed. Westchester, 111.: American Academy of Sleep Medicine, 2005; 297.

43. Sack R.L., Auckley D., Auger R.R. Circadian rhythm sleep disorders: part II, advanced sleep phase disorder, delayed sleep phase disorder, free-running disorder, and irregular sleep-wake rhythm. An American Academy of Sleep Medicine review. Sleep 2007; 30: 11: 1484-1501.

44. Shochat T, Martin J., MarlerM., Ancoli-Israel S. Illumination levels in nursing home patients: effects on sleep and activity rhythms. J Sleep Res 2000; 9: 4: 373-379.

45. Antoniadis E.A., Ко С.Н., Ralph M.R., McDonald R.J. Circadian rhythms, aging and memory. Behav Brain Res 2000; 114: 1-2: 221-233.

46. Gais S., Born J. Declarative memory consolidation: mechanisms acting during human sleep. Learn Memory 2004; 11:6: 679-685.

47. Cho К Chronic 'jet lag' produces temporal lobe atrophy and spatial cognitive deficits. Nat Neurosci 2001; 4: 6: 567—568.

48. Park H.J., Lee J.D., Kim E. Y et al. Morphological alterations in the congenital blind based on the analysis of cortical thickness and surface area. Neurolmage 2009; 47: 1: 98—106.

49. Lepore N., Shi Y, Lepore F. et al. Pattern of hippocampal shape and volume differences in blind subjects. Neurolmage 2009; 46: 4: 949-957.

50. Солнцева Л.И. Тифлопсихология детства. М: Полиграф сервис 2000; 250. (Solntseva L.I. Typhlopsychology of childhood. Moscow: Poligraph service 2000; 250.)

51. Zaidi F.H, Hull J.T., Peirson S.N. et al. Short-wavelength light sensitivity of circadian, pupillary, and visual awareness in humans lacking an outer retina. Curr Biol 2007; 17: 24: 2122-2128.

52. Shirani A., St Louis E.K. Illuminating rationale and uses for light therapy. JCSM2009; 5: 2: 155-163.

53. Gronfler C, Wright K.P., Kronauer R.E. et al. Efficacy of a single sequence of intermittent bright light pulses for delaying circadian phase in humans. Am J Physiol Endocrinol Metabol 2004; 287: 1: E174-181.

54. Yamadera H., Ito Т., Suzuki H. et al. Effects of bright light on cognitive and sleep-wake (circadian) rhythm disturbances in Alzheimer-type dementia. Psychiat Clinic Neurosci 2000; 54: 3: 352-353.

55. Lewy A.J., Bauer V.K., Hosier B.P. et al. Capturing the circadian rhythms of free-running blind people with 0.5 mg melatonin. Brain Res 2001; 918: 1-2: 96-100.

56. Lockley S. W., Skene D.J., James K. et al. Melatonin administration can entrain the free-running circadian system of blind subjects. J Endocrinol 2000; 164: 1: Rl-6.

57. Sack R.L., Brandes R.W., Kendall A.R., Lewy A.J. Entrain-ment of free-running circadian rhythms by melatonin in blind people. New Engl J Med 2000; 343: 15: 1070-1077.

58. Lewy A.J., Emens J.S., Lefler B.J. et al. Melatonin entrains free-running blind people according to a physiological dose-response curve. Chronobiol Intern 2005; 22: 6: 1093-1106.

59. Asayama K, Yamadera H., Ito T. et al. Double blind study of melatonin effects on the sleep-wake rhythm, cognitive and non-cognitive functions in Alzheimer type dementia. J Nippon Med School 2003; 70: 4: 334-341.

60. Riemersma-van derLekR.F., Swaab D.F., TwiskJ. et al. Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: a randomized controlled trial. JAMA 2008; 299: 22: 2642-2655.

61. Van Someren E.J.W., Riemersma R.F., Swaab D.F. Functional plasticity of the circadian timing system in old age: light exposure. In: M.A. Hofman, G.J. Boer, A.J. Holtmaat et al. (eds). Progress in Brain Research. Amsterdam: Elsevier Science B.V. 2002; 138: 205-231.


Для цитирования:


Кельмансон И.А. Хронопатологические аспекты расстройств сна и когнитивных функций у детей с нарушениями зрения. Российский вестник перинатологии и педиатрии. 2015;60(5):42-50.

For citation:


Kelmanson I.A. Chronopathological aspects of sleep disorders and cognitive dysfunctions in children with visual impairments. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2015;60(5):42-50. (In Russ.)

Просмотров: 167


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)