

Causes and prevention options for sarcopenia in children
https://doi.org/10.21508/1027-4065-2022-67-2-34-42
Abstract
Sarcopenia is a condition of progressive loss of muscle mass, moststudied in patients of senile age. Sarcopenia is described in children with oncological diseases, severe surgical pathology, in the perioperative period with liver transplantation, immobility in children with cerebral palsy. Sarcopenia is associated with adverse disease outcomes. This article discusses the problem of sarcopenia using the example of patients with stable dysmotility and posture. In addition to limited mobility, among the causes of sarcopenia are impairment of the ability to eat, the availability of basic nutrients and vitamin D, and a change in the intestinal microbiome. Nutritional support combined with physical rehabilitation has been shown to be effective in reversing sarcopenia.
About the Authors
A. N. ZavyalovaRussian Federation
Saint Petersburg
A. I. Khavkin
Russian Federation
Moscow
V. P. Novikova
Russian Federation
Saint Petersburg
References
1. Ooi P.H., Thompson-Hodgetts S., Pritchard-Wiart L., Gilmour S.M., Mager D.R. Pediatric Sarcopenia: A Paradigm in the Overall Definition of Malnutrition in Children? JPEN J Parenter Enteral Nutr 2020; 44(3): 407–418. DOI: 10,1002/jpen.1681
2. Perfilova O.V., Khramova E.B., Shaitarova A.V. Methods for assessing nutritional status in children with cerebral palsy. Vestnik SurGU. Meditsina. 2018; 2:8–11. (in Russ.)
3. Rakhmaeva R.F., Kamalova A.A., Ayupova V.A. Assessment of anthropometric indicators and body composition in children with cerebral palsy. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics) 2019; 64(5): 204–208. (in Russ.) DOI: 10,21508/1027–4065–201964–5–204–208
4. Chula de Castro J.A., Lima T.R., Silva D.A.S. Bodycomposition estimation in children and adolescents by bioelectrical impedance analysis: A systematic review. J Bodyw Mov Ther 2018; 22(1): 134–146. DOI: 10,1016/j.jbmt.2017.04.010
5. Metzger G.A., Sebastião Y.V., Carsel A.C., Nishimura L., Fisher J.G., Deans K.J., Minneci P.C. Establishing Reference Values for Lean Muscle Mass in the Pediatric Patient. J Pediatr Gastroenterol Nutr 2021; 72(2): 316–323. DOI: 10,1097/MPG.0000000000002958
6. Van Eyck A., Eerens S., Trouet D., Lauwers E., Wouters K., De Winter B.Y. et al. Bodycomposition monitoring in children and adolescents: reproducibility and reference values. Eur J Pediatr 2021; 180(6): 1721–1732. DOI: 10,1007/s00431–021–03936–0
7. Khoroshilov I.Ye. Sarcopenia in patients: diagnostic possibilities and treatment prospects. Lechashhii vrach 2017; 8: 36–40 (in Russ.)
8. Grigorieva I.I., Raskina T.A., Letaeva M.V., Malyshenko O.S., Averkieva Yu.V., Masenko V.L., Kokov A.N. Sarcopenia: pathogenesis and diagnosis. Fundamental’naya i klinicheskaya meditsina. 2019; 4(4): 105–116. (in Russ.) DOI: 10,23946/2500–0764–2019–4–4–105–116
9. Zakrevsky A.I., Fedorova A.A., Pasechnik I.N., Kutepov D.E. Sarcopenia and its diagnosis. Klinicheskoe pitanie i metabolizm 2021; 2(1): 13–22. (in Russ.) DOI: 10,17816/clinutr71107
10. Cruz-Jentoft A.J., Bahat G., Bauer J., Boirie Y., Bruyère O., Cederholm T. Sarcopenia: revised European consensus on definition and diagnosis. Age and Ageing 2019; 48(1): 16–31. DOI: 10,1093/ageing/afy169
11. Noble J.J., Fry N.R., Lewis A.P., Keevil S.F., Gough M., Shortland A.P. Lower limb muscle volumes in bilateral spastic cerebral palsy. Brain Dev 2014; 36(4): 294–300. DOI: 10,1016/j.braindev.2013.05.008
12. Klochkova O.A., Kurenkov A.L. Muscular Weakness and Loss of Motor Skills in Patients with Cerebral Palsy. Voprosy sovremennoi pediatrii 2020; 19(2): 107–115. (in Russ.) DOI: 10,15690/vsp.v19i2,2103
13. Jeon I., Bang M.S., Lim J.Y., Shin H.I., Leigh J.H., Kim K. et al. Sarcopenia among Adults with Cerebral Palsy in South Korea. PM R. 2019; 11(12): 1296–1301. DOI: 10,1002/pmrj.12134
14. Rehberg M., Azim M., Martakis K., Winzenrieth R., HoyerKuhn H., Schoenau E. et al. Bone Microarchitecture Assessed by Trabecular Bone Score Is Independent of Mobility Level or Height in Pediatric Patients with Cerebral Palsy. J Bone Miner Res 2020; 35(9): 1685–1694. DOI: 10,1002/jbmr.4047
15. Sabirov I.S., Kozhoeva M.Z., Ibadullaev B.M., Madaminov Zh.B., Abdymanap Kyzy A. Sarcopenia and new coronavirus infection (COVID-19). The Scientific Heritage 2021; 63–2(63): 39–46. (in Russ.) DOI: 10,24412/9215–0365–2021–63–2–39–46
16. Gilligan L.A., Towbin A.J., Dillman J.R., Somasundaram E., Trout A.T. Quantification of skeletal muscle mass: sarcopenia as a marker of overall health in children and adults. Pediatr Radiol 2020; 50(4): 455–464. DOI: 10,1007/s00247–019– 04562–7
17. Voisin S., Jacques M., Landen S., Harvey N.R., Haupt L.M., Griffiths L.R. et al. Meta-analysis of genome-wide DNA methylation and integrative omics of age in human skeletal muscle. J Cachexia Sarcopenia Muscle 2021; 12(4): 1064– 1078. DOI: 10,1002/jcsm.12741
18. Mokrysheva N.G., Krupinova Yu.A., Volodicheva V.L., Mirnaya S.S., Mel’nichenko G.A. Sarcopenia through the eyes of an endocrinologist. Ozhirenie i metabolizm 2018; 15(3): 21–27. (in Russ.) DOI: 10,14341/OMET9792
19. Davis J.A., Mohebbi M., Collier F., Loughman A., Staudacher H., Shivappa N. et al. The role of diet quality and dietary patterns in predicting muscle mass and function in men over a 15-year period. Osteoporos Int 2021; 32(11): 2193– 2203. DOI: 10,1007/s00198–021–06012–3
20. Tang M.J., Graham H.K., Davidson K.E. Botulinum Toxin A and Osteosarcopenia in Experimental Animals: A Scoping Review. Toxins (Basel) 2021; 13(3): 213. DOI: 10,3390/toxins13030213
21. Park J.H., Kang M., Jun D.W., Kim M., Kwak J.H., Kang B.K. Determining Whether Low Protein Intake (<1,0 g/kg) Is a Risk Factor for Malnutrition in Patients with Cirrhosis. J Clin Med 2021; 10(10): 2164. DOI: 10,3390/jcm10102164
22. Soto R., Díaz L.A., Rivas V., Fuentes-López E., Zalaquett M., Bruera M.J. et al. Frailty and reduced gait speed are independently related to mortality of cirrhotic patients in longterm follow-up. Ann Hepatol 2021; 25: 100327. DOI: 10,1016/j.aohep.2021,100327
23. de Figueiredo R.S., Nogueira R.J.N., Springer A.M.M., Melro E.C., Campos N.B., Batalha R.E. et al. Sarcopenia in critically ill children: A bedside assessment using point-of-care ultrasound and anthropometry. Clin Nutr 2021; 40(8): 4871– 4877. DOI: 10,1016/j.clnu.2021.07.014
24. López J.J., Cooper J.N., Albert B., Adler B., King D., Minneci P.C. Sarcopenia in children with perforated appendicitis. J Surg Res 2017; 220: 1–5. DOI: 10,1016/j.jss.2017.05.059
25. Safer U., Kaplan M., Binay Safer V. Evaluation of Sarcopenia in Children. J Surg Res 2019; 237: 112. DOI: 10,1016/j.jss.2018.03.008
26. Orsso C.E., Tibaes J.R.B., Oliveira C.L.P., Rubin D.A., Field C.J., Heymsfield S.B. et al. Low muscle mass and strength in pediatrics patients: Why should we care? Clinical Nutrition 2019; 38(5): 2002–2015. DOI: 10,1016%2Fj.clnu.2019.04.012
27. Graham H.K., Rosenbaum P., Paneth N., Dan B., Lin J.P., Damiano D.L. et al. Cerebral palsy. Nat Rev Dis Primers 2016; 2: 15082 DOI: 10,1038/nrdp.2015,82
28. Orel V.I., Sereda V.M., Kim A.V., Sharafutdinova L.L., Bezhenar S.I., Buldakova T.I. et al. Children’s health of Saint Petersburg. Pediatr 2017; 8(1): 112–119. (in Russ.) DOI: 10,17816/PED81112–119
29. Strokova T.V., Kamalova A.A., Zavyalova A.N., Taran N.N., Ivanov D.O., Aleksandrovich Yu.S. et al. Principles of nutritive support in children with children’s cerebral paralysis. In the collection: Actual problems of abdominal pathology in children. Materials of the XXVIII Congress of Pediatric Gastroenterologists in Russia and the CIS. Editors S.V. Belmer and L.I. Ilyenko. 2021; 290–335. (in Russ.)
30. Verschuren O., Smorenburg A.R.P., Luiking Y., Bell K., Barber L., Peterson M.D. Determinants of muscle preservation in individuals with cerebral palsy across the lifespan: a narrative review of the literature. J Cachexia, Sarcopenia Muscle 2018; 9(3): 453–464. DOI: 10,1002/jcsm.12287
31. Multani I., Manji J., Tang M.J., Herzog W., Howard J.J., Graham H.K. Sarcopenia, Cerebral Palsy, and Botulinum Toxin Type A. JBJS Rev 2019; 7(8): e4. DOI: 10,2106/JBJS.RVW.18,00153
32. Yi Y.G., Jung S.H., Bang M.S. Emerging Issues in Cerebral Palsy Associated With Aging: A Physiatrist Perspective. Ann Rehabil Med 2019; 43(3): 241–249. DOI: 10,5535/arm.2019.43.3.241
33. Trinh A., Wong P., Fahey M.C., Ebeling P.R., Fuller P.J., Milat F. Trabecular bone score in adults with cerebral palsy. Bone 2018; 117: 1–5. DOI: 10,1016/j.bone.2018.09.001
34. Tyuzikov I.A., Kalinchenko S.Yu. Sarcopenia: will only protein nutrition and physical activity help? The role of sex steroid hormones in the mechanisms of synthesis of muscle protein regulation. Voprosy dietologii 2017; 7(2): 41–50. (in Russ.) DOI: 10,20953/2224–5448–2017–2–41–50
35. Peterson M.D., Zhang P., Haapala H.J., Wang S.C., Hurvitz E.A. Greater Adipose Tissue Distribution and Diminished Spinal Musculoskeletal Density in Adults With Cerebral Palsy. Arch Phys Med Rehabil 2015; 96(10): 1828–33. DOI: 10,1016/j.apmr.2015.06.007
36. Peterson M.D., Gordon P.M., Hurvitz E.A. Chronic disease risk among adults with cerebral palsy: the role of premature sarcopoenia, obesity and sedentary behaviour. Obes Rev 2013; 14(2): 171–182. DOI: 10,1111/j.1467–789X.2012,01052.x
37. Cichero J.A.Y. Age-Related Changes to Eating and Swallowing Impact Frailty: Aspiration, Choking Risk, Modified Food Texture and Autonomy of Choice. Geriatrics (Basel) 2018; 3(4): 69. DOI: 10,3390/geriatrics3040069
38. Geng J., Deng L., Qiu S., Bian H., Cai B., Jin K. et al. Dietary inflammatory potential and risk of sarcopenia: data from national health and nutrition examination surveys. Aging 2020; 13(2): 1913–1928. DOI: 10,18632/aging.202141
39. Kucher A.N. Molecular genetic markers of sarcopenia. Molekulyarnaya meditsina 2021; 19(1): 17–29. (in Russ.) DOI: 10,29296/24999490–2021–01–03
40. Silva K.O., Pereira S.C., Portovedo M., Milanski M., Galindo L.C., Guzmán-Quevedo O. et al. Effects of maternal low-protein diet on parameters of locomotor activity in a rat model of cerebral palsy. Int J Dev Neurosci 2016; 52: 38–45. DOI: 10,1016/j.ijdevneu.2016.05.002
41. Hassan-Smith Z.K., Jenkinson C., Smith D.J., Hernandez I., Morgan S.A., Crabtree N.J. et al. 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 exert distinct effects on human skeletal muscle function and gene expression. PLoS One 2017; 12(2): e0170665. DOI: 10,1371/journal.pone.0170665
42. Ostojic K., Paget S., Kyriagis M., Morrow A. Acute and Chronic Pain in Children and Adolescents With Cerebral Palsy: Prevalence, Interference, and Management. Arch Phys Med Rehabil 2020; 101(2): 213–219. DOI: 10,1016/j.apmr.2019.08.475
43. Pereira S.D.C., Benoit B., de Aguiar Jr F.C.A., Chanon S., Vieille-Marchiset A., Pesenti S. et al. Fibroblast growth factor 19 as a countermeasure to muscle and locomotion dysfunctions in experimental cerebral palsy. J Cachexia Sarcopenia Muscle 2021; 12(6): 2122–2133. DOI: 10,1002/jcsm.12819
44. Nikolaichuk A.V., Sokolova A.V., Dragunov D.O., Tichomirova M.A., Duvanov I.A. Changes in Intestinal Microbiota and the Risk of Sarcopenia Progression Lechebnoe delo 2020; 1: 18–22 (in Russ.) DOI: 10,24411/2071–5315–2020–12188
45. Khavkin A.I., Vasina M.N., Zavyalova A.N., Novikova V.P. Protein digestion, casomorphins, and fermented dairy products. Voprosy prakticheskoi pediatrii (Clinical Practice in Pediatrics) 2021; 16(5): 125–132. (in Russ.) DOI: 10,20953/1817–7646–2021–5–125–132
46. Komarova O.N., Khavkin A.I. Fermented milk products in children’s nutrition: nutritional and biological value. Rossiyskiy vestnik perinatologii i pediatrii 2017; 62(5): 80–86. (in Russ.) DOI: 10,21508/1027–4065–2017–62–5–80–86
47. Khavkin А.I., Fedotova O.B., Volynets G.V., Koshkarova Yu.A., Penkina N.A., Komarova O.N. The results of a prospective comparative openlabel randomised study of the effectiveness of a probiotic- and prebiotic-fortified yogurt in small children after an acute respiratory infection. Voprosy detskoi dietologii 2019; 17(1): 29–37 (in Russ.) DOI: 10,20953/1727–5784–2019–1–29–37
48. Bogdanova N.M., Khavkin A.I., Kolobova O.L. Prospects of fermented milk products in children with primary hypolactasia of the adult type. Rossiyskiy vestnik perinatologii i pediatrii 2020; 65(3): 160–168 (in Russ.) DOI: 10,21508/1027–4065–2020–65–3–160–168
49. Khavkin A.I., Volynets G.V., Fedotova O.B., Sokolova O.V., Komarova O.N. The use of dairy products in children’s nutrition: experience and prospects. Trudnyi patsient 2019; 17(1–2): 28–36. (in Russ.) DOI: 10,24411/2074–1995–2019–10005
50. Khavkin A.I., Kovtun T.A., Makarkin D.V., Fedotova O.B. Fermented Milk Products and Child Health. Rossiyskiy vestnik perinatologii i pediatrii 2020; 65(6): 155–165. (in Russ.) DOI: 10,21508/1027–4065–2020–65–6–155–165
51. Khavkin A.I. Lactobacillus rhamnosus GG and intestinal microbiota. Voprosy detskoi dietologii 2018; 16(2): 42–51. (in Russ.) DOI: 10,20953/1727–5784–2018–2–42–51
52. Komarova О.N., Khavkin А.I. Effect of prebiotics on the gastrointestinal tract. Voprosy prakticheskoi pediatrii 2018; 13(5): 33–39. (in Russ.) DOI: 10,21508/1027–4065–2021–66–1–31–38
53. Khavkin A.I., Blat S.F. Intestinal microbiocenosis and immunity. Rossiiskii vestnik perinatologii i pediatrii 2011; 56(1): 159–174. (in Russ.)
54. Khavkin A.I., Bogdanova N.M., Novikova V.P. Biological role of zonulin: a biomarker of increased intestinal permeability syndrome. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics) 2021; 66(1): 31–38 (in Russ.) DOI: 10,21508/1027–4065–2021–66–1–31–38
55. Khavkin A.I., Kovtun T.A., Makarkin D.V., Fedotova O.B. Probiotic fermented dairy products — food or medication? Voprosy detskoi dietologii (Pediatric Nutrition) 2021; 19(3): 58–68. (in Russ.) DOI: 10,20953/1727–5784–2021–3–58–68
Review
For citations:
Zavyalova A.N., Khavkin A.I., Novikova V.P. Causes and prevention options for sarcopenia in children. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2022;67(2):34-42. (In Russ.) https://doi.org/10.21508/1027-4065-2022-67-2-34-42