Preview

Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Serum neuromodulin content in preterm infants with perinatal lesions of the central nervous system in the first day of life

https://doi.org/10.21508/1027-4065-2022-67-2-76-82

Abstract

Presently, authors of scientific publications pay much attention to the study of individual neuromarkers of damage to the central nervous system in newborns. One such marker is the growth protein neuromodulin.

The aim of the study is to estimate the concentration of neuromodulin in the first day of life in preterm infants with perinatal damage to the central nervous system and compare it with the clinical indicators of newborns in the early neonatal period.

Characteristics of children and research methods. 81 extremely preterm newborns were examined, which were divided into groups depending on the presence of intraventricular hemorrhages: Group 1 — 48 preterm infants in whom intraventricular hemorrhage was verified during the observation in the early neonatal period; Group 2 — 33 preterm infants without intraventricular hemorrhage. Determination of the concentration of the GAP-43 protein in the blood serum was carried out by enzyme immunoassay. The groups were comparable in terms of weight and height parameters, gestational age, the degree of respiratory failure at birth, and the need for mechanical ventilation (p<0,05).

Results. Group 1 had a significantly lower Apgar score at the end of the 1st (p=0,034) and 5th minutes of life (p=0,037) compared to Group 2. A comparative analysis of the concentration of neuromodulin revealed that in preterm infants of Group 1, the values of neuromodulin were significantly higher than in preterm infants of Group 2 (1,469 [1,284; 1;966] and 0,541 [0,461; 0,595] ng/mL, respectively; p<0,001). The degree of intraventricular hemorrhage (r=0,771; p<0,001), the minimum amplitude of the amplitude-integrated electroencephalography (r=–0,404, p=0,004), the Ballard score (r=–0,614, p=0,019) were statistically significantly correlated with serum neuromodulin concentration.

Conclusions. Characteristics of the concentration of GAP-43 in preterm infants with perinatal lesions of the central nervous system are given depending on the presence of intraventricular hemorrhage and the gestational age on the first day of life, significant correlations between clinical data and the level of the studied protein are revealed.  

About the Authors

A. V. Andreev
Gorodkov Research Institute of Maternity and Childhood
Russian Federation

Ivanovo



N. V. Kharlamova
Gorodkov Research Institute of Maternity and Childhood
Russian Federation

Ivanovo



G. N. Kuzmenko
Gorodkov Research Institute of Maternity and Childhood
Russian Federation

Ivanovo



A. A. Pesenkina
Gorodkov Research Institute of Maternity and Childhood
Russian Federation

Ivanovo



References

1. Shepherd E., Salam R.A., Middleton P., Han S., Makrides M., McIntyre S. et al. Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews. Cochrane Database Syst Rev 2018; 6(6): CD012409. DOI: 10,1002/14651858.CD012409.pub2

2. Manuck T.A., Rice M.M., Bailit J.L., Grobman W.A., Reddy U.M., Wapner R.J. et al. Preterm neonatal morbidity and mortality by gestational age: A contemporary cohort. Am J Obstet Gynecol 2016; 215: 103.e101–103.e114. DOI: 10,1016/j.ajog.2016.01.004

3. Volpe J., Inder T., Darras B., Vries L., Plessis A., Neil J. et al. Volpe’s Neurology of the Newborn. Elsevier, 2017; 1240

4. Perlman J. Neurology: Neonatology Questions and Controversies. Elsevier, 2018; 320

5. Zadvornov A.A., Golomidov A.V., Grigoriev E.V. Biomarkers of perinatal lesions of the central nervous system. Neonatologiya: novosti, mneniya, obuchenie 2017; 1: 47–57. (in Russ.) DOI: 10,24411/2308–2402–2017–00016

6. Chia P.H., Li P., Shen K. Cell biology in neuroscience: cellular and molecular mechanisms underlying presynapse formation. J Cell Biol 2013; 203(1): 11–22. DOI: 10,1083/jcb.201307020

7. Cai J., Tuong C.M., Zhang Y., Shields C.B., Guo G., Fu H. et al. Mouse intermittent hypoxia mimicking apnoea of prematurity: effects on myelinogenesis and axonal maturation. J Pathol 2012; 226(3): 495–508. DOI: 10,1002/path.2980

8. Holahan M.R. GAP-43 in synaptic plasticity: molecular perspectives. Res Reports Biochem 2015; 5: 137–146. DOI: 10,2147/RRBC.S73846

9. Vitkovic L., Steisslinger H.W., Aloyo V.J., Mersel M. The 43-kDa neuronal growth-associated protein (GAP-43) is present in plasma membranes of rat astrocytes. Proc Natl Acad Sci USA 1988; 85(21): 8296–8300. DOI: 10,1073/pnas.85.21.8296

10. Vitkovic L., Mersel M. Growth-associated protein 43 is down-regulated in cultured astrocytes. Metab Brain Dis 1989; 4(1): 47–53. DOI: 10,1007/BF00999493

11. Casoli T., Spagna C., Fattoretti P., Gesuita R., Bertoni-Freddari C. Neuronal plasticity in aging: a quantitative immunohistochemical study of GAP-43 distribution in discrete regions of the rat brain. Brain Res 1996; 714(1–2): 111–117. DOI: 10,1016/0006–8993(95)01504–3

12. Chao H.M., Spencer R.L., Sakai R.R., McEwen B.S. The expression of growth-associated protein GAP-43 mRNA in the rat hippocampus in response to adrenalectomy and aging. Mol Cell Neurosci 1992; 3(6): 529–535. DOI: 10,1016/1044–7431(92)90065-a

13. Berg A., Zelano J., Stephan A., Thams S., Barres B., Pekny M. et al. Reduced removal of synaptic terminals from axotomized spinal motoneurons in the absence of complement C3. Exp Neurol 2012; 237(1): 8–17. DOI: 10,1016/j.expneurol.2012.06.008

14. Gordon T., You S., Cassar S.L., Tetzlaff W. Reduced expression of regeneration associated genes in chronically axotomized facial motoneurons. Exp Neurol 2015; 264: 26–32. DOI: 10,1016/j.expneurol.2014.10.022

15. Carriel V., Garzon I., Campos A., Cornelissen M., Alaminos M. Differential expression of GAP-43 and neurofilament during peripheral nerve regeneration through bio-artificial conduits. J Tissue Eng Regen Med 2017; 11(2): 553–563. DOI: 10,1002/term.1949

16. Frey D., Laux T., Xu L., Schneider C., Caroni P. Shared and unique roles of CAP23 and GAP43 in actin regulation, neurite outgrowth, and anatomical plasticity. J Cell Biol 2000; 149(7): 1443–1454. DOI: 10,1083/jcb.149,7.1443

17. Morita S., Miyata S. Synaptic localization of growth-associated protein 43 in cultured hippocampal neurons during synaptogenesis. Cell Biochem Funct 2013; 31(5): 400–411. DOI: 10,1002/cbf.2914

18. Papile L., Burstein J., Burstein R., Koffier A. Incidence and evolution of subependymal and intraventricular hemorrhage in premature infants: a study of infants< 1500gms. J Pediatr 1978; 92: 529–534. DOI: 10,1016/s0022–3476(78)80282–0

19. Amplitude-integrated electroencephalography in assessing the functional state of the central nervous system in newborns of different gestational ages. Clinical guidelines (protocols) for neonatology. Ed. N.N. Volodin 2015; 39. Available from: http://www.raspm.ru/files/elektro-enctfalo-grafia.pdf/ Date accessed: 26.02.2021. (in Russ.)

20. Janota J., Simak J., Stranak Z., Matthews T., Clarke T., Corcoran D. Critically ill newborns with multiple organ dysfunction: assessment by NEOMOD score in a tertiary NICU. Ir J Med Sci 2008; 77(1): 11–17. DOI: 10,1007/s11845–008–0115–5

21. Chung D., Shum A., Caraveo G. GAP-43 and BASP1 in Axon Regeneration: Implications for the Treatment of Neurodegenerative Diseases. Front Cell Dev Biol 2020; 8: 567537. DOI: 10,3389/fcell.2020,567537

22. Neurobiological foundations of the emergence and rehabilitation treatment of perinatal lesions of the central nervous system in children. Ed. L.S. Namazova-Barnova. Moscow.: Pediatr, 2016; 184 (in Russ.)

23. Golosnaya G.S., Petrukhin A.S., Krasilshchikova T.M., Albogachieva D.I., Erlikh A.L., Trepilets S.V. et al. Interaction of neurotrophic and proapoptotic factors in the pathogenesis of hypoxic brain damage in newborns. Pediatriya 2010; 89(1): 20–25. (in Russ.)

24. Wood M.J., O’Loughlin A.J., Samira L. Exosomes and the blood‐brain barrier: implications for neurological diseases. Ther Deliv 2011; 2: 1095–1099. DOI: 10,4155/tde.11,83

25. Vingtdeux V., Sergeant N., Buee L. Potential contribution of exosomes to the prion‐like propagation of lesions in Alzheimer’s disease. Front Physiol 2012; 3: 229. DOI: 10,3389/fphys.2012,00229

26. Jia L., Zhu M., Kong C., Pang Y., Zhang H., Qiu Q. Blood neuro-exosomal synaptic proteins predict Alzheimer’s diseaseat the asymptomatic stage. Alzheimer’s Dement 2021; 17: 49–60. DOI: 10,1002/alz.12166

27. Ditlevsen D.K., Povlsen G.K., Berezin V., Bock E. NCAMinduced intracellular signaling revisited. J Neurosci Res 2008; 86(4): 727–743. DOI: 10,1002/jnr.21551

28. Blanquie O., Bradke F. Cytoskeleton dynamics in axon regeneration. Curr Opin Neurobiol 2018; 51: 60–69. DOI: 10,1016/j.conb.2018.02.024

29. Kharlamova N.V., Andreev A.V., Maslyukova A.V., Menzhinsky S.S., Chasha T.V., Nazarov S.B. The use of amplitude-integrated electroencephalography in preterm infants. Vrach 2018; 29(8): 59–63. (in Russ.) DOI: 10,29296/25877305–2018–08–15

30. Guzeva V.I., Ivanov D.O., Aleksandrovich Yu.S. Emergency neurology of newborns and young children. St. Petersburg; SpetsLit, 2017; 215. (in Russ.)

31. Caraveo G., Soste M., Cappelleti V., Fanning S., van Rossum D.B., Whitesell L. et al. FKBP12 contributes to α-synuclein toxicity by regulating the calcineurin-dependent phosphoproteome. Proc Natl Acad Sci USA 2017; 114(52): E11313–E11322. DOI: 10,1073/pnas.1711926115


Review

For citations:


Andreev A.V., Kharlamova N.V., Kuzmenko G.N., Pesenkina A.A. Serum neuromodulin content in preterm infants with perinatal lesions of the central nervous system in the first day of life. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2022;67(2):76-82. (In Russ.) https://doi.org/10.21508/1027-4065-2022-67-2-76-82

Views: 352


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)