Preview

Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Features of the course of acute pyelonephritis in children with an experience of a new coronavirus infection (COVID-19)

https://doi.org/10.21508/1027-4065-2022-67-2-100-108

Abstract

Purpose. To determine the clinical and laboratory features of the course of acute pyelonephritis in children with a history of COVID-19 and to determine the risk of developing chronic kidney disease.

Material and methods. The main cohort consisted of 36 patients with the debut of acute pyelonephritis, who had previously suffered COVID-19, the average age was 7,5 years. The comparison group included 47 patients with the onset of acute pyelonephritis and a normal level of IgG antibodies to SARS-CoV-2, the average age was 7,0 years. Laboratory tests included full blood count and urinalysis, blood biochemistry, procalcitonin, urine microalbumin, urine creatinine, Zimnitsky urine test, bacteriological urine test, glomerular filtration rate, coagulogram, and Lipocalin-2 associated with neutrophil gelatinase (NGAL) in the urine.

Results. Patients with a history of COVID-19, at the onset of acute pyelonephritis, demonstrated a higher incidence of apostematous pyelonephritis, a higher degree of damage to the tubulointerstitial kidney tissue, a high frequency and a higher level of hematuria, proteinuria, hyperfiltration, hypostenuria, as well as a more significant increase in fibrinogen, CRP, procalcitonin, and uNGAL/Cr levels than children of the comparison group. It was shown that almost half of the children with acute pyelonephritis who had had COVID-19 retained urinary syndrome during examination 3–4 months after the onset of the disease.

Conclusion. Thus, long-term effects of the SARS-CoV-2 virus on the renal parenchyma were confirmed, even in asymptomatic children. The high level of uNGAL/Cr in children with acute pyelonephritis who had had COVID-19, which was almost 8 times higher than in the comparison group, reflects more pronounced damage to the tubulointerstitial kidney tissue. The risk of developing chronic kidney disease in this group was 3,5 times higher.

About the Authors

A. V. Eremeeva
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Moscow



V. V. Dlin
Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
Russian Federation

Moscow



References

1. Chen J., Wang W., Tang Y., Huang X.R., Yu X., Lan H.Y. Inflammatory stress in SARS-COV-2 associated Acute Kidney Injury. Int J Biol Sci 2021; 17(6): 1497–1506. DOI: 10,7150/ijbs.58791

2. Perico N., Perico L., Ronco C., Remuzzi G. COVID-19 and the Kidney: Should Nephrologists Care about COVID-19 rather than Maintaining Their Focus on Renal Patients? Contrib Nephrol 2021; 199: 229–243. DOI: 10,1159/000517752

3. Lin L., Lu L., Cao W., Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection — a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect 2020; 9(1): 727–732. DOI: 10,1080/22221751,2020,1746199

4. Qi F., Qian S., Zhang S., Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun 2020; 526:135–140. DOI: 10,1016/j.bbrc.2020.03.044

5. Malha L., Mueller F.B., Pecker M.S., Mann S.J., August P., Feig P.U. COVID‐19 and the renin‐angiotensin system. Kidney Int Rep 2020; 5: 563–565. DOI: 10,1016/j.ekir.2020.03.024

6. Tolouian R., Vahed S.Z., Ghiyasvand S., Tolouian A., Ardalan M. COVID‐19 interactions with angiotensin‐converting enzyme 2 (ACE2) and the kinin system; looking at a potential treatment. J Renal Inj Prev 2020; 9(2): e19. DOI: 10,34172/jrip.2020,19

7. Zou X., Chen K., Zou J., Han P., Hao J., Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med 2020; 14(2): 185–192. DOI: 10,1007/s11684–020–0754–0

8. Buonaguro F.M., Ascierto P.A., Morse G.D., Buonaguro L., Puzanov I., Tornesello M.L. et al. Covid-19: Time for a paradigm change. Rev Med Virol 2020; 30(5): e2134. DOI: 10,1002/rmv.2134

9. Cheng Y., Luo R., Wang K., Zhang M., Wang Z., Dong L. et al. Kidney disease is associated with in‐hospital death of patients with COVID‐19. Kidney Int 2020; 97: 829–838. DOI: 10,1016/j.kint.2020.03.005

10. Yin W., Zhang P.L. Infectious pathways of SARS‐CoV‐2 in renal tissue. J Nephropathol 2020; 9(4): e37. DOI: 10,34172/jnp.2020,37

11. Soleimani M. Acute kidney injury in SARS‐CoV‐2 infection: direct effect of virus on kidney proximal tubule cells. Int J Mol Sci 2020; 21(9): 3275. DOI: 10,3390/ijms21093275

12. Chu K.H., Tsang W.K., Tang C.S., Lam M.F., Lai F.M., To K.F. et al. Acute renal impairment in coronavirus‐associated severe acute respiratory syndrome. Kidney Int 2005; 67: 698–705. DOI: 10,1111/j.1523–1755,2005,67130.x

13. Diao B., Wen K., Chen J., Liu Y., Yuan Z., Han C. et al. Diagnosis of acute respiratory syndrome coronavirus 2 infection by detection of nucleocapsid protein. medRxiv. 2020. DOI: 10,1101/2020.03.07,20032524

14. Reich H.N., Oudit G.Y., Penninger J.M., Scholey J.W., Herzenberg A.M. Decreased glomerular and tubular expression of ACE2 in patients with type 2 diabetes and kidney disease. Kidney Int 2008; 74: 1610–1616. DOI: 10,1038/ki.2008,497

15. Soler M.J., Wysocki J., Batlle D. ACE2 alterations in kidney disease. Nephrol Dial Transpl 2013; 28: 2687–2697. DOI: 10,1093/ndt/gft320

16. Vyhristenko L.R., Schastlivenko A.I., Bondareva L.I. Sidorenko E.V., Muzyka O.G. Kidney damage in COVID-19 infection. Vestnik VGMU 2021; 1: 7–23. (in Russ.)

17. Barros Camargo L., Quintero Marzola I.D., Cárdenas Gómez J.C., Mendoza Daza L.T., Quintana Pájaro L. Acute kidney injury associated with COVID-19: another extrapulmonary manifestation. Int Urol Nephrol 2020; 52(7): 1403– 1404. DOI: 10,1007/s11255–020–02507-w

18. Smeeth L., Thomas S.L., Hall A.J., Hubbard R., Farrington P., Vallance P. Risk of myocardial infarction and stroke after acute infection or vaccination. N Engl J Med 2004; 351: 2611–2618. DOI: 10,1056/NEJMoa041747

19. Yazıcıoğlu B., Bakkaloğlu S.A. European Society for Pediatric Nephrology. Impact of coronavirus disease-2019 on pediatric nephrology practice and education: an ESPN survey. Pediatr Nephrol. Pediatr Nephrol 2021. Online ahead of print. DOI: 10,1007/s00467–021–05226–1

20. Zimmermann H., Curtis N. Coronavirus infections in children including Covid-19: an overview of the epidemiology, clinical features, diagnosis, treatment and prevention options in children. Pediatr Infect Dis J 2020; 39: 355–368. DOI: 10,1097/INF.0000000000002660

21. Sadykova D.I., Khaliullina S.V., Anokhin V.A., Ziatdinov A.I., Senek S.A., Samoylova N.V. et al. Clinical manifestations of new coronavirus infection (COVID-19) in children admitted to hospital. Rossiyskiy Vestnik Perinatologii i Pediatrii 2021; 66(5): 88–96. (in Russ.) DOI: 10,21508/1027–4065–2021–66–5–88–96

22. European Association of Urology. Guidelines on Urological Infections. http://www.uroweb.org. Ссылка активна на 19.02.2022

23. Li Z., Yi Y., Luo X., Xiong N., Liu Y., Li S. et al. Development and Clinical Application of a Rapid IgM-IgG Combined Antibody Test for SARSCoV-2 Infection Diagnosis. J Med Virol 2020; 92(9): 1518–1524. DOI: 10,1002/jmv.25727

24. Martinez-Rojas M.A., Vega-Vega O., Bobadilla N.A. Is the kidney a target of SARS-CoV-2? Am J Physiol Renal Physiol 2020; 318(6): F1454–F1462. DOI: 10,1152/ajprenal.00160,2020

25. Wysocki J., Schulze A., Batlle D. Novel Variants of Angioten sin Converting Enzyme-2 of Shorter Molecular Size to Target the Kidney Renin Angiotensin System. Biomolecules 2019; 9(12): 886. DOI: 10,3390/biom9120886

26. Werion A., Belkhir L., Perrot M., Schmit G., Aydin S., Chen Z. et al. Cliniques universitaires Saint-Luc (CUSL) COVID-19 Research Group. SARS-CoV-2 causes a specific dysfunction of the kidney proximal tubule. Kidney Int 2020; 98(5): 1296– 1307. DOI: 10,1016/j.kint.2020.07.019

27. Yeremeyeva A.V., Dlin V.V., Korsunskiy A.A., Zaykova N.M., Bondarenko E.D., Turina I.E. Clinical diagnosis of lipocalin 2 detection associated with neutrophil gelatinase (UNGAL) in urine in children with pyelonephritis debut. Pediatria 2018; 97(5): 27–35. (in Russ.) DOI: 10,24110/0031–403X-2018–97–5–27–35

28. Varga Z., Flammer A.J., Steiger P., Haberecker M., Andermatt R., Zinkernagel A.S. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020; 395 (10234): 1417– 1418. DOI: 10,1016/S0140–6736(20)30937–5


Review

For citations:


Eremeeva A.V., Dlin V.V. Features of the course of acute pyelonephritis in children with an experience of a new coronavirus infection (COVID-19). Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2022;67(2):100-108. (In Russ.) https://doi.org/10.21508/1027-4065-2022-67-2-100-108

Views: 860


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)