Preview

Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

A new nucleotide variant in the ELAC2 gene in a young child with a ventricular hypertrophy

https://doi.org/10.21508/1027-4065-2022-67-4-120-126

Abstract

The few foreign papers of the last decade have shown the relationship of various pathogenic variants of the ELAC2 gene to heterogeneous phenotypic manifestations, for which the unfavorable prognosis is common, caused by severe cardiomyopathy in the first year of life. The article presents the first clinical observation of a rare variant of the hypertrophic phenotype cardiomyopathy with a fatal outcome in the first year of life, and variants c.887T>C, p.L296P and c.1979A>T, p.K660I of the ELAC2 gene in Russia.

The purpose of the work is to present clinical observation of a child with an early manifestation of a hypertrophic phenotype of cardiomyopathy caused by pathogenic variants of the ELAC2 gene. 

About the Authors

L. A. Gandaeva
National Medical Research Center for Children’s Health
Russian Federation

Moscow



E. N. Basargina
National Medical Research Center for Children’s Health; Filatov Clinical Institute of Children’s Health at the Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Moscow



O. B. Kondakova
National Medical Research Center for Children’s Health
Russian Federation

Moscow



V. G. Kaverina
National Medical Research Center for Children’s Health
Russian Federation

Moscow



A. A. Pushkov
National Medical Research Center for Children’s Health
Russian Federation

Moscow



O. P. Zharova
National Medical Research Center for Children’s Health
Russian Federation

Moscow



P. P. Fisenko
National Medical Research Center for Children’s Health
Russian Federation

Moscow



K. V. Savostyanov
National Medical Research Center for Children’s Health
Russian Federation

Moscow



References

1. Heliö T., Elliott P., Koskenvuo J.W., EORP Cardiomyopathy Registry Investigators Group. ESC EORP Cardiomyopathy Registry: real-life practice of genetic counselling and testing in adult cardiomyopathy patients. ESC Heart Fail 2020; 7(5): 3013-3021. DOI: 10.1002/ehf2.12925

2. Elliott P.M., Anastasakis A., Borger M.A., Borggrefe M., Cecchi F., Charron P. et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 2014; 35: 2733-2779. DOI: 10.1093/eurheartj/ehu284

3. Lee T.M., Hsu D.T., Kantor P., Towbin J.A., Ware S.M., Colan S.D. et al. Pediatric Cardiomyopathies. Circ Res 2017; 121(7): 855-873. DOI: 10.1161/CIRCRESAHA.116.309386

4. Sabater-Molina M., Navarro-Peñalver M., Muñoz-Esparza C., Esteban-Gil Á., Santos-Mateo J.J., Gimeno J.R. Genetic Factors Involved in Cardiomyopathies and in Cancer. J Clin Med 2020; 9(6): 1702. DOI: 10.3390/jcm9061702

5. Brzezniak L.K., Bijata M., Szczesny R.J., Stepien P.P. Involvement of human ELAC2 gene product in 3’ end processing of mitochondrial tRNAs. RNA Biol 2011; 8: 616-626. DOI: 10.4161/rna.8.4.15393

6. El-Hattab A.W., Scaglia F. Mitochondrial Cardiomyopathies. Front Cardiovasc Med 2016; 3: 25. DOI: 10.3389/fcvm.2016.00025

7. Globa O.V., Zhurkova N.V., Kondakova O.B., Tihomirov E.E., Basargina E.N., Semenova N.Yu. et al. Clinical polymorphism of mitochondrial dysfunction in children. Sovremennye problemy nauki i obrazovanija 2008; 4: 52-53. (in Russ.)

8. Nikolaeva E.A. Diagnostics and prevention of nuclear-encoded mitochondrial diseases in infants. Rossiyskiy Vestnik Perinatologii i Pediatrii. 2014; 59(2): 19-28. (in Russ.)

9. Schlieben L.D., Prokisch H. The Dimensions of Primary Mitochondrial Disorders. Front Cell Dev Biol 2020; 8: 600079. DOI: 10.3389/fcell.2020.600079

10. Rorbach J., Gammage P.A., Minczuk M. C7orf30 is necessary for biogenesis of the large subunit of the mitochondrial ribosome. Nucleic Acids Res 2012; 40(9): 4097-4109. DOI: 10.1093/nar/gkr1282

11. Studenikin V.M., Globa O.V. Mitochondrial pathology in children. Lechashhij vrach 2016; 1: 22 (in Russ.)

12. Sacchetto C., Sequeira V., Bertero E., Dudek J., Maack C., Calore M. Metabolic alterations in inherited cardiomyopathies. J Clin Med 2019; 8(12): 2195. DOI: 10.3390/jcm8122195

13. Akawi N.A., Ben-Salem S., Hertecant J., John A., Pramathan T., Kizhakkedath P. et al. A homozygous splicing mutation in ELAC2 suggests phenotypic variability including intellectual disability with minimal cardiac involvement. Orphanet J Rare Dis 2016; 11: 139. DOI: 10.1186/s13023-016-0526-8

14. Haack T.B., Kopajtich R., Freisinger P., Wieland T., Rorbach J., Nicholls T.J. et al. ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy. Am J Hum Genet 2013; 93: 211-223. DOI: 10.1016/j.ajhg.2013.06.006

15. Holmgren D., Wahlander H., Eriksson B.O., Oldfors A., Holme E., Tulinius M. Cardiomyopathy in children with mitochondrial disease; clinical course and cardiological findings. Eur Heart J 2003; 24(3): 280-288. DOI: 10.1016/s0195-668x(02)00387-1

16. Savostyanov K.V., Namazova-Baranova L.S., Basargina E.N., Vashakmadze N.D., Zhurkova N.V., Pushkov A.A. et al. The New Genome Variants in Russian Children with Genetically Determined Cardiomyopathies Revealed with Massive Parallel Sequencing. Annals of the Russian Academy of Medical Sciences. 2017;72 (4): 242- 253. (in Russ.) DOI: 10.15690/vramn872

17. Saoura M., Powell C.A., Kopajtich R., Alahmad A., Al-Balool H.H., Albash B. et al. Mutations in ELAC2 associated with hypertrophic cardiomyopathy impair mitochondrial tRNA 3’-end processing. Hum Mutat 2019; 40(10): 1731-1748. DOI: 10.1002/humu.23777

18. Alvarez-Cubero M.J., Saiz M., Martinez-Gonzalez L.J., Alvarez J.C., Lorente J.A., Cozar J.M. Genetic analysis of the principal genes related to prostate cancer: a review. Urol Oncol 2013; 31(8): 1419-1429. DOI: 10.1016/j.urolonc.2012.07.011

19. Boczonadi V., Ricci G., Horvath R. Mitochondrial DNA transcription and translation: clinical syndromes. Essays Biochem 2018; 62: 321-340. DOI: 10.1042/EBC20170103

20. D’Souza A.R., Minczuk M. Mitochondrial Transcription and Translation: Overview. Essays Biochem 2018; 62:309-320. DOI: 10.1042/EBC20170102

21. Brambilla A., Olivotto I., Favilli S., Spaziani G., Passantino S., Procopio E. et al. Impact of cardiovascular involvement on the clinical course of paediatric mitochondrial disorders. Orphanet J Rare Dis 2020; 15(1): 196. DOI: 10.1186/s13023-020-01466-w

22. Parikh S., Karaa A., Goldstein A., Ng Y.S., Gorman G., Feigenbaum A. et al. Solid organ transplantation in primary mitochondrial disease: Proceed with caution. Mol Genet Metabol 2016; 118(3): 178-184. DOI: 10.1016/j.ymgme.2016.04.009

23. Bates M.G., Nesbitt V., Kirk R., He L., Blakely E.L., Alston C.L. et al. Mitochondrial respiratory chain disease in children undergoing cardiac transplantation: a prospective study. Int J Cardiol 2012; 155(2): 305-306. DOI: 10.1016/j.ijcard.2011.11.063


Review

For citations:


Gandaeva L.A., Basargina E.N., Kondakova O.B., Kaverina V.G., Pushkov A.A., Zharova O.P., Fisenko P.P., Savostyanov K.V. A new nucleotide variant in the ELAC2 gene in a young child with a ventricular hypertrophy. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2022;67(4):120-126. (In Russ.) https://doi.org/10.21508/1027-4065-2022-67-4-120-126

Views: 542


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)