Preview

Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Comorbid pathology in children with type II–III spinal muscular atrophy on the background of acquired deformities of the skeleton bones

https://doi.org/10.21508/1027-4065-2022-67-6-58-6

Abstract

Spinal muscular atrophy (SMA) is a severe genetic disease associated with impaired SMN protein synthesis and degeneration of alpha motor neurons in the spinal cord. Developing neurogenic kyphoscoliosis and deformity of the chest against the background of symmetrical muscular hypotension sharply limit the activity of patients, worsening the concomitant diseases.
Purpose. The study aims at determining the comorbid background of children with type II–III spinal muscular atrophy who underwent inpatient treatment for acquired skeletal bone deformities.
Material and methods. A retrospective analysis of the data was carried out for the period from 2017 to 2021 based on the medical records of 31 children. The study group included 10 girls and 21 boys; 16 children were with type II and 15 — with type III spinal muscular atrophy. The following were assessed: comorbidity, neurological status, hemodynamic parameters, echocardiography, spirometry, laboratory research data.
Results. In our study, comorbidity was associated with nutritional status (19% of patients overweight, 29% underweight), mental retardation (3%), gastroesophageal reflux disease (19%), diseases of the ENT organs (16%), eyes (19%), heart and lungs (93%). For health reasons, 61% of children required the use of non-invasive ventilation, and 71% of insufflator-aspirators. Limited motor abilities were registered based on the HFMSE and GMFCS scales, dysphagia based on the EDACS scale. A biochemical blood test revealed a low level of creatinine.
Conclusion. Patients with spinal muscular atrophy require multidisciplinary care in diagnosis, treatment and rehabilitation. The use of objective rating scales, instrumental and laboratory methods of examination allow for a comprehensive analysis of the potential of children with spinal muscular atrophy, to select effective, family-oriented treatment regimens. Serum creatinine as a biomarker for the severity of muscle denervation makes it possible to monitor the progression of spinal muscular atrophy and predict response to treatment.

About the Authors

V. V. Evreinov
National Ilizarov Medical Research Centre for Traumatology and Ortopaedics
Russian Federation

Kurgan



E. A. Raznoglyadova
National Ilizarov Medical Research Centre for Traumatology and Ortopaedics
Russian Federation

Kurgan



References

1. Kolb S.J., Kissel J.T. Spinal Muscular Atrophy. Neurol Clin 2015; 33(4): 831–846. DOI: 10.1016/j.ncl.2015.07.004

2. Mercuri E., Finkel R.S., Muntoni F., Wirth B., Montes J., Main M. et al. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord 2018; 28(2): 103–115. DOI: 10.1016/j.nmd.2017.11.005

3. Wirth B., Karakaya M., Kye M.J., Mendoza-Ferreira N. Twenty-five years of spinal muscular atrophy research: from phenotype to genotype to therapy, and what comes next. Annu Rev Genomics Hum Genet 2020; 21: 231–261. DOI:10.1146/annurev-genom-102319–103602

4. Vu-Han T.L., Reisener M.J., Putzier M., Pumberger M. Scoliosis in spinal muscular atrophy. Orthopade 2021; 50(8): 657–663. DOI: 10.1007/s00132–021–04131–7

5. Salazar R., Montes J., Young S.D., McDermott M.P., Martens W., Pasternak A. et al. Quantitative evaluation of lower extremity joint contractures in spinal muscular atrophy: implications for motor function. Pediatr Phys Ther 2018; 30(3): 209–215. DOI: 10.1097/PEP.0000000000000515

6. Guo W.H., Cao L., Chang L. Clinical characteristics of non-invasive ventilation treatment in children with spinal muscular atrophy and sleep disordered breathing. Zhonghua Er Ke Za Zhi 2019; 2;57(10): 792–796. DOI: 10.3760/cma.j.issn.0578–1310.2019.10.012

7. Groznova O.S., Rudenskaya G.E., Adyan T.A., Kharlamov D.A. Cardiac lesion in children with in-herited neuromuscular diseases. Rossiyskiy Vestnik Perinatologii i Pediatrii 2014; 59(2): 35–42. (in Russ.)

8. Maxwell G.K., Szunyogova E., Shorrock H.K., Gillingwater T.H., Parson S.H. Developmental and degenerative cardiac defects in the Taiwanese mouse model of severe spinal muscular atrophy. J Anat 2018; 232(6): 965–978. DOI: 10.1111/joa.12793

9. WÜngaarde C.A., Blank A.C., Stam M., Wadman R.I., Berg L.H., Pol W.L. Cardiac pathology in spinal muscular atrophy: a systematic review. Orphanet J Rare Dis 2017; 12: 67. DOI: 10.1186/s13023–017–0613–5

10. Deguise M.O., Chehade L., Kothary R. Metabolic dysfunction in spinal muscular atrophy. Int J Mol Scie 2021; 22(11): 5913. DOI: 10.3390/Ùms22115913

11. Deguise M.O., Baranello G., Mastella C., Beauvais A., Michaud J., Leone A. et al. Abnormal fatty acid metabolism is a core component of spinal muscular atrophy. Ann Clin Transl Neurol 2019; 6(8): 1519–1532. DOI: 10.1002/acn3.50855

12. Szunyogova E., Zhou H., Maxwell G.K., Powis R.A., Muntoni F., Gillingwater T.H. et al. Survival Motor Neuron (SMN) protein is required for normal mouse liver development. Scientific Reports 2016; 6: 34635. DOI: 10.1038/srep34635

13. WÜngaarde C.A., Huisman A., Wadman R.I., Cuppen I., Stam M., Heitink-Pollé K.M.J. et al. Abnormal coagulation parameters are a common non-neuromuscular feature in patients with spinal muscular atrophy. J Neurol Neurosurg Psychiatry 2020; 91(2): 212–214. DOI: 10.1136/jnnp-2019–321506

14. De Wel B., Goosens V., Sobota A., Van Camp E., Geukens E., Van Kerschaver G. et al. Nusinersen treatment significantly improves hand grip strength, hand motor function and MRC sum scores in adult patients with spinal muscular atrophy types 3 and 4. J Neurol 2021; 268(3): 923–935. DOI: 10.1007/s00415–020–10223–9

15. Pera M.C., Coratti G., Forcina N., Mazzone E.S., Scoto M., Montes J. et al. Content validity and clinical meaningfulness of the HFMSE in spinal muscular atrophy. BMC Neurol 2017; 17: 39. DOI: 10.1186/s12883–017–0790–9

16. McGrattan K.E., Graham R.J., DiDonato C.J., Darras B.T. Dysphagia phenotypes in spinal muscular atrophy: the past, present, and promise for the future. Am J Speech Lang Pathol 2021; 30(3): 1008–1022. DOI: 10.1044/2021_AJSLP-20–00217

17. Finkel R.S., Mercuri E., Meyer O.H., Simonds A.K., Schroth M.K., Graham R.J. et al. Diagnosis and management of spinal muscular atrophy: Part 2: Pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscular Disorders 2018; 28(3): 197–207. DOI: 10.1016/j.nmd.2017.11.004

18. Morris L.E.H., EstilowT., Glanzman A.M., Cusack S.V., YumS.W. Improving temporomandibular range of motion in people with Duchenne muscular dystrophy and spinal muscular atrophy. Am J Occupat Ther 2020; 74(2): 7402205080p1–7402205080p10. DOI: 10.5014/ajot.2020.030825

19. Yang J.H., Kasat N.S., Suh S.W., Kim S.Y. Improvement in reflux gastroesophagitis in a patient with spinal muscular atrophy after surgical correction of kyphoscoliosis: a case report. Clin Orthop Relat Res 2011; 469(12): 3501–3505. DOI: 10.1007/s11999–011–2080-y

20. Grychtol R., Abela F., Fitzgeral D.A. The role of sleep diagnostics and non-invasive ventilation in children with spinal muscular atrophy. Paediatr Respir Rev 2018; 28: 18–25. DOI: 10.1016/j.prrv.2018.07.006

21. Chabanon A., Seferian A.M., Daron A., Péréon Y., Cances C., Vuillerot C. et al. Prospective and longitudinal natural history study of patients with Type 2 and 3 spinal muscular atrophy: Baseline data NatHis-SMA study. PLoS One 2018; 13(7): e0201004. DOI: 10.1371/journal.pone.0201004

22. Djordjevic S.A., Milic-Rasic V., Brankovic V., Kosac A., Vukomanovic G., Topalovic M. et al. Cardiac findings in pediatric patients with spinal muscular atrophy types 2 and 3. Muscle Nerve 2021; 63(1): 75–83. DOI: 10.1002/mus.27088

23. Alves C.R.R., Zhang R., Johnstone A.J., Garner R., Nwe P.H., Siranosian J.J. et al. Serum creatinine is a biomarker of progressive denervation in spinal muscular atrophy. Neurology 2020; 94(9): e921–e931. DOI: 10.1212/WNL.0000000000008762

24. Freigang M., Wurster C.D., Hagenacker T., Stolte B., Weiler M., Kamm C. et al. Serum creatine kinase and creatinine in adult spinal muscular atrophy under nusinersen treatment. Ann Clin Transl Neurol 2021; 8(5): 1049–1063. DOI: 10.1002/acn3.51340

25. Pino M.G., Rich K.A., Kolb S.J. Update on Biomarkers in Spinal Muscular Atrophy. Biomark Insights 2021; 16: 11772719211035643. DOI: 10.1177/11772719211035643


Review

For citations:


Evreinov V.V., Raznoglyadova E.A. Comorbid pathology in children with type II–III spinal muscular atrophy on the background of acquired deformities of the skeleton bones. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2022;67(6):58-62. (In Russ.) https://doi.org/10.21508/1027-4065-2022-67-6-58-6

Views: 368


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)