Preview

Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Clinical and pathophysiological aspects of impaired water and sodium metabolism in newborns and neurological complication

https://doi.org/10.21508/1027-4065-2023-68-1-11-15

Abstract

This literature review covers the pathophysiological features of water and sodium exchange in newborns. The main mechanisms regulating fluid and electrolyte balance in newborns are poorly studied. The volume and composition of the extracellular fluid are provided by the functional activity of the kidneys under the control of the neuroendocrine system. The antidiuretic hormone plays the main role in the regulation of water excretion by the kidneys. The volume of intracellular fluid depends on the passive water transport with the participation of aquaporins. Lability of water and electrolyte metabolism in newborns may be accompanied by hyponatremia. For various pathological conditions in the neonatal period, certain types of hyponatremias are characteristic. Correction of hyponatremia should be carried out taking into account its pathophysiological type. Hyponatremia is a common complication associated with severe neonatal brain damage. Hyponatremia contributes to brain damage as an independent factor. The study of indicators of water and electrolyte balance in the neonatal period has an important prognostic value for early detection of damage to the central nervous system.

About the Authors

Z. G. Tarasova
Astrakhan State Medical University
Russian Federation

Astrakhan



O. K. Kirilochev
Astrakhan State Medical University
Russian Federation

Astrakhan



G. R. Sagitova
Astrakhan State Medical University
Russian Federation

Astrakhan



N. S. Cherkasov
Astrakhan State Medical University
Russian Federation

Astrakhan



References

1. Bockenhauer D., Zieg J. Electrolyte disorders. Clin Perinatol 2014; 41(3): 575–590. DOI: 10.1016/j.clp.2014.05.007

2. Prometnoi D.V., Aleksandrovich Yu.S., Pshenisnov K.V. Fluid Overload as a Predictor of Lethal Outcome in Critically-Ill Children. Obshhaya reanimatologiya 2019; 15(1): 12–26. (in Russ.) DOI: 10.15360/1813–9779–2019–1–12–26

3. Tepaev R.F. Hyponatremia in children. Focus — neurological complications. Pediatricheskaya farmakologiya 2011; 8(4): 69–75. (in Russ.)

4. Kirilochev O.K., Belopasov V.V., Tarasova Z.G. Neurological outcomes in children undergoing multi-organ syndrome insufficiency in the neonatal period. Lechashhii vrach 2019; 5: 26 — 29. (in Russ.)

5. Ivanov D.O., Mavropulo T.K., Surkov D.N. Practical aspects of water-electrolyte and endocrine disorders in young children. Ed. D.O. Ivanov. SPb: Inform-Navigator, 2014; 368. (in Russ.)

6. Oh W., Guignard J.-P., Baumgart S. Nephrology and Fluid/Electrolyte Physiology. Neonatology Questions and Controversies. Ed. R.A. Polin; translation from English ed. O.L. Chugunova. M.: Logosphere, 2015; 344. (in Russ.)

7. Nagelhus E.A., Ottersen O.P. Physiological roles of aquaporin-4 in brain. Physiol Rev 2013; 93(4): 1543–1562. DOI: 10.1152/physrev.00011.2013

8. Kettail V.M., Arches R.A. Pathophysiology of the endocrine system. Translation from English. Мoscow: BINOM, 2016; 336. (in Russ.)

9. Sheiman D.A. Pathophysiology of the kidney. Translation from English. Мoscow: BINOM, 2019; 190. (in Russ.)

10. Shanin V.Yu. Pathophysiology of critical conditions. SPb: Elbi-SPb., 2003; 436. (in Russ.)

11. Ber M., Frotscher M. Topical diagnosis in neurology according to Peter Duus: Anatomy, physiology, clinic. Translation from English; ed. O.S. Levin, M.: Practical Medicine, 2014; 584. (in Russ.)

12. Zieg J. Pathophysiology of Hyponatremia in Children. Front Pediatr 2017; 5: 213. DOI: 10.3389/fped.2017.00213

13. Jung H.J., Kwon T.H. Molecular mechanisms regulating aquaporin-2 in kidney collecting duct. Am J Physiol Renal Physiol 2016; 311(6): F1318–F1328. DOI: 10.1152/ajprenal.00485.2016

14. Suarez-Rivera M., Bonilla-Felix M. Fluid and electrolyte disorders in the newborn: sodium and potassium. Curr Pediatr Rev 2014; 10(2):115–122. DOI: 10.2174/157339631002140513102053

15. Fu S., Ping P., Wang F., Luo L. Synthesis, secretion, function, metabolism and application of natriuretic peptides in heart failure. J Biol Eng 2018; 12: 2. DOI: 10.1186/s13036–017–0093–0

16. Mir T.S., Laux R., Hellwege H.H., Liedke B., Heinze C., von Buelow H. et al. Plasma concentrations of aminoterminal pro atrial natriuretic peptide and aminoterminal pro brain natriuretic peptide in healthy neonates: marked and rapid increase after birth. Pediatrics 2003; 112(4): 896–899. DOI: 10.1542/peds.112.4.896

17. Porzionato A., Macchi V., Rucinski M., Malendowicz L.K., De Caro R. Natriuretic peptides in the regulation of the hypothalamic-pituitary-adrenal axis. Int Rev Cell Mol Biol 2010; 280: 1–39. DOI: 10.1016/S1937–6448(10)80001–2

18. Maslennikova I.N., Bokerija E.L., Kazantseva I.A., Ivanets T.Yu., Degtyarev D.N. Value of the natriuretic peptide level in diagnostics of newborns with heart failure. Ros Vestn Perinatol i Pediatr 2019; 64(3): 51–59. (in Russ.) DOI: 10.21508/1027–4065–2019–64–3–51–59

19. Mohottige D., Lehrich R.W., Greenberg A. Hypovolemic Hyponatremia. Front Horm Res 2019; 52: 93–103. DOI: 10.1159/000493240

20. Sola E., Gines P. Hypervolemic Hyponatremia (Liver). Front Horm Res 2019; 52: 104–112. DOI: 10.1159/000493241

21. Davila C.D., Udelson J.E. Hypervolemic Hyponatremia in Heart Failure. Front Horm Res 2019; 52: 113–129. DOI: 10.1159/000493242

22. Gross P., Pusl T. Hyponatriämie [Causes, diagnosis and differential diagnosis of hyponatremia]. Dtsch Med Wochenschr 2016; 141 (21):1543–1548. German. DOI: 10.1055/s-0042–108694

23. Cui H., He G., Yang S., Lv Yu., Jiang Z., Gang X. et al. Inappropriate Antidiuretic Hormone Secretion and Cerebral Salt-Wasting Syndromes in Neurological Patients. Front Neurosci 2019; 13: 1170. DOI: 10.3389/fnins.2019.01170

24. Cuesta M., Hannon M.J., Thompson C.J. Diagnosis and treatment of hyponatraemia in neurosurgical patients. Endocrinol Nutr 2016; 63(5): 230–238. English, Spanish. DOI: 10.1016/j.endonu.2015.12.007

25. Yuen K.C.J., Ajmal A., Correa R., Little A.S. Sodium Perturbations After Pituitary Surgery. Neurosurg Clin N Am 2019; 30(4): 515–524. DOI: 10.1016/j.nec.2019.05.011

26. Peri A. Morbidity and Mortality of Hyponatremia. Front Horm Res 2019; 52: 36–48. DOI: 10.1159/000493235

27. Nathan B.R. Cerebral correlates of hyponatremia. Neurocrit Care 2007; 6(1): 72–78. DOI: 10.1385/NCC:6:1:72

28. Von Saint Andre-von Arnim A., Farris R., Roberts J.S., Yanay O., Brogan T.V., Zimmerman J.J. Common endocrine issues in the pediatric intensive care unit. Crit Care Clin 2013; 29(2): 335–358. DOI: 10.1016/j.ccc.2012.11.006

29. Adrogué H.J., Madias N.E. Hyponatremia. N Engl J Med 2000; 342(21): 1581–1589. DOI: 10.1056/NEJM200005253422107

30. Lambeck J., Hieber M., Drebing A., Niesen W.D. Central Pontine Myelinosis and Osmotic Demyelination Syndrome. Dtsch Arztebl Int 2019; 116(35–36): 600– 606. DOI: 10.3238/arztebl.2019.0600

31. Zheng F., Ye X., Shi X., Lin Z., Yang Z., Jiang L. Hyponatremia in Children with Bacterial Meningitis. Front Neurol 2019; 10: 421. DOI: 10.3389/fneur.2019.00421

32. Moritz M.L. Syndrome of Inappropriate Antidiuresis. Pediatr Clin North Am 2019; 66(1): 209–226. DOI: 10.1016/j.pcl.2018.09.005

33. Williams C.N., Riva-Cambrin J., Bratton S.L. Etiology of post-operative hyponatremia following pediatric intracranial tumor surgery. J Neurosurg Pediatr 2016; 17(3): 303–309. DOI: 10.3171/2015.7.PEDS15277

34. Kasim N., Bagga B., Diaz-Thomas A. Intracranial pathologies associated with central diabetes insipidus in infants. J Pediatr Endocrinol Metab 2018; 31(9): 951–958. DOI: 10.1515/jpem-2017–0300

35. Verbalis J.G. The Curious Story of Cerebral Salt Wasting: Fact or Fiction? Clin J Am Soc Nephrol 2020; 15(11): 1666–1668. DOI: 10.2215/CJN.00070120

36. Kamel K.S., Halperin M.L. Use of Urine Electrolytes and Urine Osmolality in the Clinical Diagnosis of Fluid, Electrolytes, and Acid-Base Disorders. Kidney Int Rep 2021; 6(5): 1211–1224. DOI: 10.1016/j.ekir.2021.02.003

37. Lin Yu.L., Hung K.L., Lo C.W. Mycoplasma pneumoniae-associated encephalitis complicated by cerebral salt wasting syndrome. Clin Case Rep 2017; 5(11): 1830–1833. DOI: 10.1002/ccr3.1192

38. Han M.J., Kim S.C., Joo C.U., Kim S.J. Cerebral salt-wasting syndrome in a child with Wernicke encephalopathy treated with fludrocortisone therapy: A case report. Medicine (Baltimore) 2016; 95 (36): e4393. DOI: 10.1097/MD.0000000000004393

39. Caffarelli C., Santamaria F., Mirra V., Bacchini E, Santoro A., Bernasconi S. et al. Advances in paediatrics in 2019: current practices and challenges in allergy, endocrinology, gastroenterology, public health, neonatology, nutrition, nephrology, neurology, respiratory diseases and rheumatic diseases. Ital J Pediatr 2020; 46(1): 89. DOI: 10.1186/s13052–020–00853–0

40. Cizmeci M.N., Kanburoglu M.K., Akelma A.Z., Donmez A., Duymaz S., Tatli M.M. Syndrome of inappropriate antidiuretic hormone secretion refractory to treatment in a newborn with alobar holoprosencephaly. Genet Couns 2013; 24(3): 313–318

41. Dalton J., Dechert R.E., Sarkar S. Assessment of association between rapid fluctuations in serum sodium and intraventricular hemorrhage in hypernatremic preterm infants. Am J Perinatol 2015; 32(8): 795–802. DOI: 10.1055/s-0034–1396691

42. Jani S., Ariss R., Velumula P., Altinok D., Chawla S. Term Infant with Cerebral Venous Sinus Thrombosis. Case Rep Pediatr 2020; 2020: 8883007. DOI: 10.1155/2020/8883007

43. Ranjan R., Lo S.C., Ly S., Krishnananthan V., Lim A.K.H. Progression to Severe Hypernatremia in Hospitalized General Medicine Inpatients: An Observational Study of Hospital-Acquired Hypernatremia. Medicina (Kaunas) 2020; 56(7): 358. DOI: 10.3390/medicina56070358

44. Patti G., Ibba A., Morana G., Napoli F., Fava D., di Iorgi N. et al. Central diabetes insipidus in children: Diagnosis and management. Best Pract Res Clin Endocrinol Metab 2020; 34(5): 101440. DOI: 10.1016/j.beem.2020.101440

45. Thakore P., Dunbar A.E., Lindsay E.B. Central diabetes insipidus: A rare complication of IVH in a very low birth weight preterm infant. J Neonatal Perinatal Med 2019; 12(1):103–107. DOI: 10.3233/NPM-1837

46. Jones G., Muriello M., Patel A., Logan L. Enteroviral Meningoencephalitis Complicated by Central Diabetes Insipidus in a Neonate: A Case Report and Review of the Literature. J Pediatric Infect Dis Soc 2015; 4(2): 155–158. DOI: 10.1093/jpids/pit055

47. Verbalis J.G. Acquired forms of central diabetes insipidus: Mechanisms of disease. Best Pract Res Clin Endocrinol Metab 2020; 34(5): 101449. DOI: 10.1016/j.beem.2020.101449


Review

For citations:


Tarasova Z.G., Kirilochev O.K., Sagitova G.R., Cherkasov N.S. Clinical and pathophysiological aspects of impaired water and sodium metabolism in newborns and neurological complication. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2023;68(1):11-15. (In Russ.) https://doi.org/10.21508/1027-4065-2023-68-1-11-15

Views: 739


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)