

Клинико-генетические варианты первичной цилиарной дискинезии у детей
https://doi.org/10.21508/1027-4065-2023-68-1-39-38
Аннотация
Первичная цилиарная дискинезия — редкая генетически детерминированная патология, приводящая к хроническому воспалительному поражению респираторного тракта, органов слуха и нарушению фертильной функции. В статье представлены предварительные результаты проводимого в клинике исследования, направленного на возможность прогнозирования клинического течения заболевания в зависимости от генетических вариантов заболевания. Это позволяет при своевременной диагностике персонализировать подход к лечению детей с таким инвалидизирующим заболеванием, как первичная цилиарная дискинезия.
Цель исследования. Определение клинико-генетических вариантов первичной цилиарной дискинезии и выявление закономерностей развития заболевания.
Материалы и методы. В исследование включены дети от 0 до 18 лет с дефектом цилиарного аппарата, верифицированным посредством анализа подвижности ресничек цилиарного эпителия слизистой оболочки дыхательных путей и прошедшим исследование экзома.
Результаты. Выявлены характерные закономерности поражения органов мишеней, преобладающие в группе детей с нарушением фактора сборки цилии, а также в группе детей с поражением динеиновых ручек.
Заключение. Проведение генетического обследования у детей с подозрением на первичную цилиарную дискинезию актуально с целью не только подтверждения заболевания, но и прогнозирования его течения.
Об авторах
А. А. НовакРоссия
Новак Андрей Александрович — мл. науч. сотр. отдела хронических воспалительных и аллергических болезней легких
127412 Москва, ул. Талдомская, д. 2
Ю. Л. Мизерницкий
Россия
Мизерницкий Юрий Леонидович — заслуженный работник здравоохранения РФ, д.м.н., проф., зав. отделом хронических воспалительных и аллергических болезней легких
127412 Москва, ул. Талдомская, д. 2
Список литературы
1. Hildebrandt F., Benzing T. Ciliopathies. N Engl J Med 2011; 364(16): 1533–1543. DOI: 10.1056/NEJMra1010172
2. Богорад А.Е., Дьякова С.Э., Мизерницкий Ю.Л. Первичная цилиарная дискинезия: современные подходы к диагностике и терапии. Российский вестник перинатологии и педиатрии 2019; 64(5): 123–133. DOI: 10.21508/1027–4065–2019–64–5–123–133
3. Новак А.А., Мизерницкий Ю.Л. Первичная цилиарная дискинезия: состояние проблемы и перспективы. Медицинский совет 2021; (1): 276–285. DOI: 10.21518/2079–701X-2021–1–276–285
4. Ferkol T., Leigh M. Primary ciliary dyskinesia and newborn respiratory distress. Semin Perinatol 2006; 30(6): 335–340. DOI: 10.1053/j.semperi.2005.11.001
5. Mullowney T., Manson D., Kim R., Stephens D., Shah V., Dell S. Primary ciliary dyskinesia and neonatal respiratory distress. Pediatrics 2014; 134(6): 1160–1166. DOI: 10.1542/peds.2014–0808
6. Lucas J.S., Barbato A., Collins S.A., Goutaki M., Behan L., Caudri D. et al. European respiratory society guidelines for the diagnosis of primary ciliary dyskinesia. Eur Respir J 2017; 49(1): 1601090. DOI: 10.1183/13993003.01090–2016
7. Sturgess J.M., Turner J.A. Ultrastructural pathology of cilia in the immotile cilia syndrome. Perspect Pediatr Pathol 1984; 8(2): 133–161.
8. O’Callaghan C., Rutman A., Williams G.M., Hirst R.A. Inner dynein arm defects causing primary ciliary dyskinesia: repeat testing required. Eur Respir J 2011; 38(3): 603–607. DOI: 10.1183/09031936.00108410
9. Fliegauf M., Olbrich H., Horvath J., Wildhaber J.H., Zariwala M., Kennedy M. et al. Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am J Respir Crit Care Med 2005; 171(12): 1343–1949. DOI: 10.1164/rccm.200411–1583OC
10. Loges N.T., Omran H. Dyneins (Second Edition) Dynein Mechanics, Dysfunction and Disease. Elsevier; Amsterdam, The Netherlands: 2018. Dynein dysfunction as a cause of primary ciliary dyskinesia and other ciliopathies; p. 316–355
11. Fliegauf M., Olbrich H., Horvath J., Wildhaber J.H., Maimoona Z.A., Kennedy M. et al. Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am J Respir Crit Care Med 2005; 171: 1343–1349. DOI: 10.1164/rccm.200411–1583OC
12. Loges N.T., Antony D., Maver A., Deardorff M.A., Güleç E.Y., Gezdirici A. et al. Recessive DNAH9 loss-of-function mutations cause laterality defects and subtle respiratory ciliary-beating defects. Am J Hum Genet 2018; 103: 995–1008. DOI: 10.1016/j.ajhg.2018.10.020
13. Omran H., Häffner K., Völkel A., Kuehr J., Ketelsen U.P., Ross U.H. et al. Homozygosity mapping of a gene locus for primary ciliary dyskinesia on chromosome 5p and identification of the heavy dynein chain DNAH5 as a candidate gene. Am J Respir Cell Mol Biol 2000; 23: 696–702. DOI: 10.1165/ajrcmb.23.5.4257
14. Schwabe G.C., Hoffmann K., Loges N.T., Birker D., Rossier C., Olbrich H. et al. Primary ciliary dyskinesia associated with normal axoneme ultrastructure is caused by DNAH11 mutations. Hum Mutat 2008; 29: 289–298. DOI: 10.1002/humu.20656
15. Knowles M.R., Leigh M.W., Carson J.L., Davis S.D., Dell S.D., Ferkol T.W. et al. Genetic Disorders of Mucociliary Clearance Consortium. Mutations of DNAH11 in patients with primary ciliary dyskinesia with normal ciliary ultrastructure. Thorax 2012; 67: 433–441. DOI: 10.1136/thoraxjnl-2011–200301
16. Pennarun G., Escudier E., Chapelin C., Bridoux A.M., Cacheux V., Roger G. et al. Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am J Hum Genet 1999; 65: 1508–1519. DOI: 10.1086/302683
17. Nicastro D., Schwartz C., Pierson J., Gaudette R., Porter M.E., McIntosh J.R. The molecular architecture of axonemes revealed by cryoelectron tomography. Science 2006; 313: 944–948. DOI: 10.1126/science.1128618
18. Onoufriadis A., Paff T., Antony D., Shoemark A., Micha D., Kuyt B. et al. Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. Am J Hum Genet 2013; 92: 88–98. DOI: 10.1016/j.ajhg.2012.11.002
19. Wu D.H., Singaraja R.R. Loss-of-function mutations in CCDC114 cause primary ciliary dyskinesia. Clin Genet 2013; 83: 526–527. DOI: 10.1111/cge.12127
20. Duquesnoy P., Escudier E., Vincensini L., Freshour J., Bridoux A.M., Coste A. et al. Loss-of-function mutations in the human ortholog of Chlamydomonas reinhardtii ODA7 disrupt dynein arm assembly and cause primary ciliary dyskinesia. Am J Hum Genet 2009; 85: 890–896. DOI: 10.1016/j.ajhg.2009.11.008
21. Omran H., Kobayashi D., Olbrich H., Tsukahara T., Loges N.T., Hagiwara H. et al. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 2008; 456: 611–616. DOI: 10.1038/nature07471
22. Satouh Yu., Padma P., Toda T., Satoh N., Ide H., Inaba K. Molecular characterization of radial spoke subcomplex containing radial spoke protein 3 and heat shock protein 40 in sperm flagella of the ascidian Ciona intestinalis. Mol Biol Cell 2005; 16: 626–636. DOI: 10.1091/mbc.e04–09–0784
23. Castleman V.H., Romio L., Chodhari R., Hirst R.A., de Castro S.C.P., Parker K.A. et al. Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities. Am J Hum Genet 2009; 84: 197–209. DOI: 10.1016/j.ajhg.2009.01.011
24. Alsaadi M.M., Gaunt T.R., Boustred C.R., Guthrie P.A.I., Liu X., Lenzi L. et al. From a single whole exome read to notions of clinical screening: primary ciliary dyskinesia and RSPH9 p.Lys268del in the Arabian Peninsula. Ann Hum Genet 2012; 76: 211–220. DOI: 10.1111/j.1469–1809.2012.00704.x
25. Jeanson L., Copin B., Papon J.F. Dastot-Le Moal F., Duquesnoy P., Montantin G. et al. RSPH3 mutations cause primary ciliary dyskinesia with central-complex defects and a near absence of radial spokes. Am J Hum Genet 2015; 97: 153–162. DOI: 10.1016/j.ajhg.2015.05.004
26. El Khouri E., Thomas L., Jeanson L. Bequignon E., Vallette B., Duquesnoy P. et al. Mutations in dnajb13, encoding an hsp40 family member, cause primary ciliary dyskinesia and male infertility. Am J Hum Genet 2016; 99: 489–500. DOI:10.1016/j.ajhg.2016.06.022
27. Olbrich H., Schmidts M., Werner C., Onoufriadis A., Loges N.T., Raidt J. et al. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am J Hum Genet 2012; 91: 672–684. DOI: 10.1016/j.ajhg.2012.08.016
28. Cindrić S., Dougherty G.W., Olbrich H., Hjeij R., Loges N.T., Amirav I. et al. Spef2- and hydin-mutant cilia lack the central pair associated protein SPEF2 aiding PCD diagnostics. Am J Respir Cell Mol Biol 2019; 62(3): 382–396. DOI: 10.1165/rcmb.2019–0086OC
29. Bustamante-Marin X.M., Shapiro A., Sears P.R., Charng W.L., Conrad D.F., Leigh M.W. et al. Identification of genetic variants in CFAP221 as a cause of primary ciliary dyskinesia. J Hum Genet 2019; 65(2): 175–180. DOI: 10.1038/s10038–019–0686–1
30. Warner F.D. Ciliary inter-microtubule bridges. J Cell Sci 1976; 20: 101–114
31. Wirschell M., Olbrich H., Werner C., Tritschler D., Bower R., Sale W.S. et al. The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. Nat Genet 2013; 45: 262–268. DOI: 10.1038/ng.2533
32. Horani A., Brody S.L., Ferkol T.W., Shoseyov D., Wasserman M.G., Ta-shma A. et al. CCDC65 mutation causes primary ciliary dyskinesia with normal ultrastructure and hyperkinetic cilia. PLoS One 2013; 26: e72299. DOI: 10.1371/journal.pone.0072299
33. Olbrich H., Cremers C., Loges N.T., Werner C., Nielsen K.G., Marthin J.K. et al. Loss-of-Function GAS8 Mutations Cause Primary Ciliary Dyskinesia and Disrupt the Nexin-Dynein Regulatory Complex. Am J Hum Genet 2015; 97: 546–554. DOI: 10.1016/j.ajhg.2015.08.012
34. Jeanson L., Thomas L., Copin B., Coste A., Sermet-Gaudelus I., Dastot-Le Moal F. et al. Mutations in Gas8, a gene encoding a nexin-dynein regulatory complex subunit, cause primary ciliary dyskinesia with axonemal disorganization. Hum Mutat 2016; 37: 776–785. DOI: 10.1002/humu.23005
35. Carlen B., Lindberg S., Stenram U. Absence of nexin links as a possible cause of primary ciliary dyskinesia. Ultrastruct Pathol 2003; 27: 123–126. DOI: 10.1080/01913120309930
36. Boon M., Wallmeier J., Ma L., Loges N.T., Jaspers M., Olbrich H. et al. MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Commun 2014; 5: 4418. DOI: 10.1038/ncomms5418
37. Wallmeier J., Al-Mutairi D.A., Chen C.T., Loges N.T., Pennekamp P., Menchen T. et al. Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Genet 2014; 46: 646–651. DOI: 10.1038/ng.2961
38. Tadd K., Morgan L., Rosenow T., Schultz A., Susanto C., Murray C., Robinson P. CF derived scoring systems do not fully describe the range of structural changes seen on CT scans in PCD. Pediatric Pulmonology, 2019; 54(4): 471–477. DOI: 10.1002/ppul.24249
39. Olm M.A., Caldini E.G., Mauad T. Diagnosis of primary ciliary dyskinesia. J Bras Pneumol 2015; 41(3): 251–263. DOI: 10.1590/S1806–37132015000004447
40. Halbeisen F.S., Jose A., de Jong C., Nyilas S., Latzin P., Kuehni C.E. et al. Spirometric indices in primary ciliary dyskinesia: systematic review and meta-analysis. ERJ Open Res 2019; 5(2): 00231–2018. DOI: 10.1183/23120541.00231–2018
41. Goutaki M., Lam Yu.T., Alexandru M., Anagiotos A., Armengot M., Bequignon E. et al. Study protocol: the ear-nose-throat (ENT) prospective international cohort of patients with primary ciliary dyskinesia (EPIC-PCD). BMJ Open 2021; 11(10): e051433. DOI: 10.1136/bmjopen-2021–051433
Рецензия
Для цитирования:
Новак А.А., Мизерницкий Ю.Л. Клинико-генетические варианты первичной цилиарной дискинезии у детей. Российский вестник перинатологии и педиатрии. 2023;68(1):39-46. https://doi.org/10.21508/1027-4065-2023-68-1-39-38
For citation:
Novak A.A., Mizernitskiy Yu.L. Clinical and genetic spectrum of primary ciliary dyskinesia in children. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2023;68(1):39-46. (In Russ.) https://doi.org/10.21508/1027-4065-2023-68-1-39-38