Клиническое значение индивидуальных особенностей митохондриальной ДНК
Аннотация
Широко известно, что мутации митохондриальной ДНК могут оказывать существенное влияние на развитие и течение различных мультисистемных заболеваний. Однако митохондриальный геном крайне вариабелен, даже при отсутствии патологических мутаций, он несет в себе важные индивидуальные черты. Некоторые полиморфизмы митохондриальной ДНК закреплены наследованием на протяжении тысяч лет, они филогенетически развивались по мере расселения человечества. В настоящее время эти полиморфизмы систематизированы в так называемые гаплогруппы. Целью настоящего обзора явился анализ литературы последних лет, посвященной взаимосвязи наследственного паттерна митохондриального генома (т.е. гаплогрупп) с фенотипическими особенностями. Структура митохондриальной ДНК фенотипически может проявляться как физиологические особенности организма, предрасположенность к тому или иному виду спортивной нагрузки, долгожительство. С другой стороны, индивидуальная структура митохондриальной ДНК может влиять на риск развития метаболических расстройств, заболеваний мозга, иммунной системы, психических заболеваний, воспалительных процессов и сепсиса. Многие исследования посвящены влиянию особенностей митохондриальной ДНК на предрасположенность к раку и течение этого заболевания. Отдельного внимания заслуживает влияние особенностей структуры митохондриального генома на чувствительность к различным видам лечения: трансплантация, антиретровирусная терапия и др. В настоящем обзоре не только выделены наиболее интересные исследования последних лет, но и рассматриваются современные методологические подходы к изучению митохондриальных гаплогрупп. В связи с глобальной разрозненностью результатов анализа гаплогрупп на сегодняшний день крайне важно максимально широкое освещение проводимых исследований.
Ключевые слова
Об авторах
В. С. СухоруковРоссия
д.м.н., проф., зав. научно-исследовательской лабораторией общей патологии
А. С. Воронкова
Россия
н.с научно-исследовательской лаборатории общей патологии
Н. А. Литвинова
Россия
н.с. научно-исследовательской лаборатории общей патологии
Список литературы
1. Luft R., Ikkos D., Palmieri G., Ernster L., Afzelius B. A case of severe hypermetabolism of non-thyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J Clin Invest 1962; 41: 1776–1804.
2. Васильев В.Б. Генетические основы митохондриальных болезней. Ст-Петербург: Нестор-История 2006; 146.
3. Сухоруков В.С. Очерки митохондриальной патологии. М: Медпрактика-М 2011; 288. (Sukhorukov V.S. Mitochondrial pathology outlines. Moscow: Medpractica 2011; 288.)
4. Wallace D.C., Singh G., Lott M.T. et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 1988; 242: 1427–1430.
5. http://www.mitomap.org/
6. Wallace D.C., Zheng X., Lott M.T. et al. Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell 1988; 55: 601–610.
7. Shoffner J.M., Lott M.T., Lezza A.M. et al. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA-lys mutation. Cell 1990; 61: 931–937.
8. Holt I.J., Harding A.E., Morgan-Hughes J.A. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 1988; 331: 717–719.
9. Chinnery P.F., Hudson G. Mitochondrial genetics. Br Med Bull 2013; 106: 1: 135–159.
10. An ganization of the human mitochondrial genome. Nature 1981; 290: 5806: 457–465.
11. Barrell B.G., Bankier A.T., Drouin J. A different genetic code in human mitochondria. Nature 1979; 282: 5735: 189–194.
12. Denaro M., Blanc H., Johnson M.J. et al. Ethnic variation in HpaI endonuclease cleavage patterns of human mitochondrial DNA. Proc Natl Acad Sci USA 1981; 78: 5768–5772.
13. Johnson M.J., Wallace D.C., Ferris S.D. et al. Radiation of human mitochondrial DNA types analyzed by restriction endonuclease cleavage patterns. J Mol Evol 1983; 19: 255–271.
14. Torroni A., Schurr T.G., Cabell M.F. et al. Asian affinities and continental radiation of the four founding Native American mtDNAs. Am J Hum Genet 1993; 53: 3: 563–590.
15. Chen Y.-S., Torroni A., Excoffier L. et al. Analysis of mtDNA variation in African population reveals the most ancient of all human continent-specific haplogroups. Am J Hum Genet 1995; 57: 133–149.
16. Wallace D.C., Fan W. Energetics, epigenetics, mitochondrial genetics. Mitochondrion 2010; 10: 24–31.
17. Neiman M., Taylor D.R. The causes of mutation accumulation in mitochondrial genomes. Proc R Soc B 2009; 276: 1201– 1209.
18. Fan W., Waymire K.G., Narula N. et al. A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 2008; 319: 5865: 958–962.
19. Ma J., Purcell H., Showalter L., Aagaard K.M. Mitochondrial DNA sequence variation is largely conserved at birth with rare denovo mutations in neonates. Am J Obstet Gynecol 2015; 212: 4: 530: e1–8.
20. Hongzhi L., Danhui L., Jianxin L. et al. Physiology and Pathophysiology of Mitochondrial DNA. Advances in Experimental Medicine and Biology 2012; 942: 39–51.
21. Ridge P.G., Maxwell T.J., Foutz S.J. et al. Mitochondrial genomic variation associated with higher mitochondrial copy number: the Cache County Study on Memory Health and Aging. BMC Bioinformatics 2014; 15: 7: 6.
22. Larsen S., Díez-Sánchez C., Rabol R. et al. Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H. Biochim Biophys Acta 2014; 1837: 226–231.
23. Baudouin S.V., Saunders D., Tiangyou W. et al. Mitochondrial DNA and survival after sepsis: a prospective study. Lancet 2005; 366: 2118–2121.
24. Ruiz-Pesini E., Lapena A.C., Diez-Sanchez C. et al. Human mtDNA haplogroups associated with high or reduced spermatozoa motility. Am J Hum Genet 2000; 67: 682–696.
25. Mikami E., Fuku N., Kong Q.P. et al. Comprehensive analysis of common and rare mitochondrial DNA variants in elite Japanese athletes: a case-control study. J Hum Genet 2013; 58: 12: 780–787.
26. Niemi A.K., Majamaa K. Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. Eur J Hum Genet 2005; 13: 965–969.
27. Gubina M.A., Girgol’kau L.A., Babenko V.N. et al. Mitochondrial DNA polymorphism in populations of aboriginal residents of the Far East. Genetika 2013; 49: 7: 862–76.
28. Mitchell S., Goodloe R., Brown-Gentry K. et al. Characterization of mitochondrial haplogroups in a large population-based sample from the United States. Hum Genet 2014; 133: 7: 861–868.
29. Ballard J.W.O., Katewa S.D., Melvin R.G. et al. Comparative Analysis of Mitochondrial Genotype and Aging. Ann NY Acad Sci 2007; 1114: 93–106.
30. De Benedictis G., Carrieri A.G., Varcasia A.O. et al. Inherited Variability of the Mitochondrial Genome and Successful Aging in Humans. Ann N Y Acad Sci 2000; 908: 208–218.
31. Pinós T., Nogales-Gadea G., Ruiz J.R. et al. Are mitochondrial haplogroups associated with extreme longevity? A study on a Spanish cohort. Age (Dordr) 2012; 34: 1: 227-33.
32. Feng J., Zhang J., Liu M. et al. Association of mtDNA haplogroup F with healthy longevity in the female Chuang population, China. Exp Gerontol 2011; 46: 12: 987–993.
33. Nishigaki Y., Fuku N., Tanaka M. Mitochondrial haplogroups associated with lifestyle-related diseases and longevity in the Japanese population. Geriatr Gerontol Int 2010; 10: 221–235.
34. Tońska K., Kodroń A., Bartnik E. Genotype-phenotype correlations in Leber hereditary optic neuropathy. Biochim Biophys Acta 2010; 1797: 7: 1119–1123.
35. Behbehani R., Melhem M., Alghanim G. et al. ND4L gene concurrent 10609T>C and 10663T>C mutations are associated with Leber’s hereditary optic neuropathy in a large pedigree from Kuwait. Br J Ophthalmol 2014; 98: 6: 826–831.
36. Meng X., Zhu J., Gao M., Zhang S. et al. The analysis of mitochondrial DNA haplogroups and variants for Leber’s hereditary optic neuropathy in Chinese families carrying the m.14484T >C mutation. Yi Chuan 2014; 36: 4: 336–345.
37. Bishop N.A., Lu T., Yankner B.A. Neural mechanisms of ageing and cognitive decline. Nature 2010; 464: 7288: 529–535.
38. Leuner K., Müller W.E., Reichert A.S. From mitochondrial dysfunction to amyloid beta formation: novel insights into the pathogenesis of Alzheimer’s disease. Mol Neurobiol 2012; 46: 1: 186–193.
39. Tranah G., Yokoyama J., Katzman S. et al. Mitochondrial DNA sequence associations with dementia and amyloid-β in elderly African Americans. Neurobiol Aging 2014; 35: 2: 442e1–442.e8.
40. Coskun P., Wyrembak J., Schriner S.E. et al. A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim Biophys Acta 2012; 1820: 5: 553–564.
41. Lifshitz J., Sullivan P.G., Hovda D.A. et al. Mitochondrial damage and dysfunction in traumatic brain injury. Mitochondrion 2004; 4: 705–713.
42. Bulstrode H., Nicoll J., Hudson G. et al. Mitochondrial DNA and Traumatic Brain Injury. Ann Neurol 2014; 75: 186–195.
43. Xu M., He Y., Geng J. et al. The mitochondrial tRNAMet/ tRNAGlnA4401G and tRNACysG5821A mutations may be associated with hypertension in two Han Chinese families. Yi Chuan 2014; 36: 2: 127–134.
44. Abu-Amero K.K., Azad T.A., Sultan T. et al. Association of mitochondrial haplogroups H and R with keratoconus in Saudi Arabian patients. Invest Ophthalmol Vis Sci 2014; 55: 5: 2827–2831.
45. Schurr T.G., Dulik M.C., Cafaro T.A. et al. Genetic Background and Climatic Droplet Keratopathy Incidence in a Mapuche Population from Argentina. PLoS One 2013; 8: 9: e74593.
46. Tavira B., Gomez J., Diaz-Corte C. et al. Mitochondrial DNA haplogroups and risk of new-onset diabetes among tacrolimustreated renal transplanted patients. Gene 2014; 538: 195–198.
47. Боулс Р. Эффективность комбинированной терапии с применением коэнзима Q10, L-карнитина и амитриптилина в лечении синдрома циклической рвоты и сопутствующих функциональных расстройств. Рос вестн перинатол педиат 2012; 57: 4: 2: 105–111 (Boles R.G. Combination therapy with co-enzyme Q10, L-carnitine and amitriptyline is highly efficacious in the treatment of cyclic vomiting syndrome and associated functional symptomatology. Ros vestn perinatol pediat 2012; 57: 4: 2: 105–111.)
48. Van Tilburg M.A., Zaki E.A., Venkatesan T. et al. Irritable bowel syndrome may be associated with maternal inheritance andmitochondrial DNA control region sequence variants. Dig Dis Sci 2014; 59: 7: 1392–1397.
49. Jiménez-Sousa M.A., Tamayo E., Guzmán-Fulgencio M. et al. Relationship between European mitochondrial haplogroups and chronic renal allograft rejection in patients with kidney transplant. Int J Med Sci 2014; 11: 11: 1129–1132.
50. Lee I., Hu ttemann M. Energy crisis: The role of oxidative phosphorylation in acute inflammation and sepsis. Biochim Biophys Acta 2014; 1842: 9: 1579–1586. derson S., Bankier A.T., Barrell B.G. et al. Sequence and or
51. Lorente L., Iceta R., Martin M.M. et al. Severe Septic Patients with Mitochondrial DNA Haplogroup JT Show Higher Survival Rates: A Prospective, Multicenter, Observational Study. PLoS ONE 2013; 8: 9: e73320.
52. Hart A., Samuels D., Hulgan T. The Other Genome: A Systematic Review of Studies of Mitochondrial DNA Haplogroups and Outcomes of HIV Infection and Antiretroviral Therapy. AIDS Rev 2013; 15: 4: 213–220.
53. Weigl S., Paradiso A., Tommasi S. Mitochondria and familial predisposition to breast cancer. Curr Genomics 2013; 14: 3: 195–203.
54. Ericson N., Kulawiec M., Vermulst M. et al. Decreased mitochondrial DNA mutagenesis in human colorectal cancer. PLoS Genet 2012; 8: 6: e1002689.
55. Shen L., Fang H., Chen T. et al. Evaluating mitochondrial DNA in cancer occurrence and development. Ann N Y Acad Sci 2010; 1201: 26-33.
56. Earp M.A., Brooks-Wilson A., Cook L. et al. Inherited common variants in mitochondrial DNA and invasive serous epithelial ovarian cancer risk. BMC Research Notes 2013; 6: 425.
57. Cheng M., Guo Z., Li H. et al. Identification of sequence polymorphisms in the mitochondrial displacement loop as risk factors for sporadic and familial breast cancer. Tumour Biol 2014; 35: 5: 4773–4777.
58. Salas A., García-Magariños M., Logan I. et al. The saga of the many studies wrongly associating mitochondrial DNA with breast cancer. BMC Cancer 2014; 14: 659.
59. Canter J.A., Kallianpur A.R., Parl F.F. et al. Mitochondrial DNA G10398A polymorphism and invasive breast cancer in African-American women. Cancer Res 2005; 65: 17: 8028– 8033.
60. Francis A., Pooja S., Rajender S. et al. A mitochondrial DNA variant 10398G>A in breast cancer among South Indians: an original study with meta-analysis. Mitochondrion 2013; 13: 6: 559–565.
61. Covarrubias D., Bai R.-K., Wong L.-JC. et al. Mitochondrial DNA variant interactions modify breast cancer risk. J Hum Genet 2008; 53: 10: 924–928.
62. Bai R.K., Leal S.M., Covarrubias D. et al. Mitochondrial genetic background modifies breast cancer risk. Cancer Res 2007; 67: 10: 4687–4694.
63. Torroni A., Wallace D.C. Classification of European mtDNAs from an analysis of three European populations. Genetics 1996; 144: 1835–1850.
64. Fang H., Shen L., Chen T. et al. Cancer type-specific modulation of mitochondrial haplogroups in breast, colorectal and thyroid cancer. BMC Cancer 2010; 10: 421.
65. Darvishi K., Sharma S., Bhat A.K. et al. Mitochondrial DNA G10398A polymorphism imparts maternal Haplogroup N a risk for breast and esophageal cancer. Cancer Lett 2007; 249: 2: 249–255.
66. Czarnecka A.M., Krawczyk T., Zdrozny M. et al. Mitochondrial NADH-dehydrogenase subunit 3 (ND3) polymorphism (A10398G) and sporadic breast cancer in Poland. Breast Cancer Res Treat 2010; 121: 2: 511–518.
67. Sultana G.N., Rahman A., Shahinuzzaman A.D. et al. Mitochondrial DNA mutations–-candidate biomarkers for breast cancer diagnosis in Bangladesh. Chin J Cancer 2012; 31: 9: 449–454.
68. Kenney M.C., Chwa M., Atilano S.R. et al. Molecular and bioenergetic differences between cells with African versus European inherited mitochondrial DNA haplogroups: Implications for population susceptibility to diseases. Biochim Biophys Acta 2014; 1842: 208–219.
69. Kenney M.C., Chwa M., Atilano S.R. et al. Inherited mitochondrial DNA variants can affect complement, inflammation and apoptosis pathways: insights into mitochondrial–nuclear interactions. Hum Mol Genet 2014; 23: 13: 3537–3551.
70. Bandelt H.J., Parson W. Consistent treatment of length variants in the human mtDNA control region: a reappraisal. Inter J Legal Med 2008; 122: 11–21.
71. Budowle B., Polanskey D., Fisher C. et al. Automated Alignment and Nomenclature for Consistent Treatment of Polymorphisms in the Human Mitochondrial DNA Control Region, J Forensic Sci 2010; 55: 5: 1190–1195.
72. SWGDAM. Interpretation Guidelines for Mitochondrial DNA Analysis by Forensic DNA Testing Laboratories. 2013.
73. http://empop.org/
74. Polanskey D., Den Hartog B.K., Elling J.W. et al. Comparison of Mitotyper Rules and Phylogenetic-based mtDNA Nomenclature Systems. J Forensic Sci 2010; 55: 5: 1184–1189.
Рецензия
Для цитирования:
Сухоруков В.С., Воронкова А.С., Литвинова Н.А. Клиническое значение индивидуальных особенностей митохондриальной ДНК. Российский вестник перинатологии и педиатрии. 2015;60(3):10-20.
For citation:
Sukhorukov V.S., Voronkova A.S., Litvinova N.A. Clinical relevance of individual mitochondrial DNA characteristics. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2015;60(3):10-20. (In Russ.)