

The potential of pharmacotranscriptomic markers for predicting mycophenolic acid efficacy in children with steroid-dependent nephrotic syndrome
https://doi.org/10.21508/1027-4065-2024-69-5-65-74
Abstract
Nephrotic syndrome is one of the most common glomerular diseases in childhood. It is known that about half of patients with nephrotic syndrome develop dependence on steroid therapy, which requires the inclusion of a treatment regimen of selective immunosuppressive therapy. Mycophenolic acid (MPA) has been identified as a promising drug for steroid-resistant nephrotic syndrome, and it forms the basis of immunosuppressive therapy for this condition. The present study evaluates the importance of determining the expression of genes responsible for the metabolism of mycophenolic acid in patients with steroid-dependent nephrotic syndrome to maintain stable clinical and laboratory remission of the disease. The article demonstrates the significance and role of MDR1, UGT1A7, UGT1A9 and UGT2B7 gene expression as potential markers of increased risk of relapses and opens up prospects for the use of a transcriptomic approach to identify patients who require careful selection of pharmacotherapy. Although the results obtained are promising, changes in the expression of metabolic enzymes are only one of several factors that contribute to the effectiveness of treatment. Based on these data, it may be possible in the future to develop personalized monitoring strategies that can help tailor treatment to individual patients and increase its effectiveness.
Keywords
About the Authors
V. P. PakhomovaRussian Federation
Moscow
S. L. Morozov
Russian Federation
Moscow
V. Yu. Voinova
Russian Federation
Moscow
A. B. Shimanova
Russian Federation
Kazan
References
1. Pal A., Kaskel F. History of Nephrotic Syndrome and Evolution of its Treatment. Front Pediatr 2016; 4: 56. DOI: 10.3389/fped.2016.00056
2. Cameron J.S., Hicks J. The origins and development of the concept of a “nephrotic syndrome”. Am J Nephrol 2002; 22(2–3): 240–247. DOI: 10.1159/000063768
3. Hahn D., Samuel S.M., Willis N.S., Craig J.C., Hobson E.M. Corticosteroid therapy for nephrotic syndrome in children. Cochrane Database Syst Rev 2020; 2020(8): CD001533. DOI: 10.1002/14651858.CD001533.pub6
4. Morozov S.L., Kursova T.S., Petrosyan E.K., Piruzieva O.R., Dlin V.V. Mycophenolate mofetil in the treatment of primary nephrotic syndrome in children. Rossiyskiy vestnik perinatologii i pediatrii 2023; 68(2): 22–28. (in Russ.) DOI: 10.21508/1027–4065–2023–68–2–22–28
5. Banaszak B., Banaszak P. The increasing incidence of initial steroid resistance in childhood nephrotic syndrome. Pediatr Nephrol 2012; 27(6): 927–932. DOI: 10.1007/s00467–011–2083–7
6. Morozov S.L., Dlin V.V., Sadykov A.R., Voronkova A.S., Sukhorukov V.S. Mechanisms of resistance to immunosuppressive therapy in patients with nephrotic syndrome. Rossiyskiy vestnik perinatologii i pediatrii 2017; 62(4): 19–24. (in Russ.) DOI: 10.21508/1027–4065–2017–62–4–19–24
7. Filler G., Alvarez-Elías A.C., McIntyre C., Medeiros M. The compelling case for therapeutic drug monitoring of mycophenolate mofetil therapy. Pediatr Nephrol 2017; 32(1): 21–29. DOI: 10.1007/s00467–016–3352–2
8. Lamba V., Sangkuhl K., Sanghavi K., Fish A., Altman R.B., Klein T.E. PharmGKB summary: mycophenolic acid pathway. Pharmacogenet Genomics 2014; 24(1): 73–79. DOI: 10.1097/FPC.0000000000000010
9. McMurray R.W., Harisdangkul V. Mycophenolate mofetil: selective T cell inhibition. Am J Med Sci 2002; 323(4): 194–196. DOI: 10.1097/00000441–200204000–00005
10. Hedstrom L. IMP dehydrogenase: structure, mechanism, and inhibition. Chem Rev 2009; 109(7): 2903–2928. DOI: 10.1021/cr900021w
11. Jonsson C.A., Carlsten H. Mycophenolic acid inhibits inosine 5’-monophosphate dehydrogenase and suppresses immunoglobulin and cytokine production of B cells. Int Immunopharmacol 2003; 3(1): 31–37. DOI: 10.1016/s1567–5769(02)00210–2
12. Betonico G.N., Abudd-Filho M., Goloni-Bertollo E.M., Pavarino-Bertelli E. Pharmacogenetics of mycophenolate mofetil: a promising different approach to tailoring immunosuppression? J Nephrol 2008; 21(4): 503–509.
13. Michelon H., König J., Durrbach A., Quteineh L., Verstuyft C., Furlan V. et al. SLCO1B1 genetic polymorphism influences mycophenolic acid tolerance in renal transplant recipients. Pharmacogenomics 2010; 11(12): 1703–1713. DOI: 10.2217/pgs.10.132
14. Kiberd B.A., Lawen J., Fraser A.D., Keough-Ryan T., Belitsky P. Early adequate mycophenolic acid exposure is associated with less rejection in kidney transplantation. Am J Transplant 2004; 4(7): 1079–1083. DOI: 10.1111/j.1600–6143.2004.00455.x
15. Na Takuathung M., Sakuludomkan W., Koonrungsesomboon N. The Impact of Genetic Polymorphisms on the Pharmacokinetics and Pharmacodynamics of Mycophenolic Acid: Systematic Review and Meta-analysis. Clin Pharmacokinet 2021; 60(10): 1291–1302. DOI: 10.1007/s40262–021–01037–7
16. Meng H.Y., Luo Z.H., Hu B., Jin W.L., Yan C.K., Li Z.B. et al. SNPs affecting the clinical outcomes of regularly used immunosuppressants. Pharmacogenomics 2018; 19(5): 495–511. DOI: 10.2217/pgs-2017–0182
17. Joy M.S., Boyette T., Hu Y., Wang J., La M. Effects of uridine diphosphate glucuronosyltransferase 2B7 and 1A7 pharmacogenomics and patient clinical parameters on steady-state mycophenolic acid pharmacokinetics in glomerulonephritis. Eur J Clin Pharmacol 2010; 66(11): 1119–30. DOI: 10.1007/s00228–010–0846-x
18. Morozov S.L., Pakhomova V.P., Voinova V.Yu. Expression profile of genes associated with steroid dependence in children with idiopathic nephrotic syndrome. Prakticheskaya meditsina 2024; 22(3): 57–62. (in Russ.) DOI: 10.32000/2072–1757–2024–3–57–62
19. Bergan S., Brunet M., Hesselink D.A., Johnson-Davis K.L. Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2021; 43(2): 150–200. DOI: 10.1097/FTD.0000000000000871
20. Wang J., Figurski M., Shaw L.M., Burckart G.J. The impact of P-glycoprotein and Mrp2 on mycophenolic acid levels in mice. Transpl Immunol 2008; 19(3–4): 192–196. DOI: 10.1016/j.trim.2008.05.009
21. Rosso Felipe C., de Sandes T.V., Sampaio E.L., Park S.I., Silva H.T., Jr, Medina Pestana J.O. Clinical impact of polymorphisms of transport proteins and enzymes involved in the metabolism of immunosuppressive drugs. Transplant Proc 2009; 41(5): 1441–1455. DOI: 10.1016/j.transproceed.2009.03.024
22. Yap D.Y.H., Tam C.H., Yung S., Wong S., Tang C.S.O., Mok T.M.Y. et al. Pharmacokinetics and pharmacogenomics of mycophenolic acid and its clinical correlations in maintenance immunosuppression for lupus nephritis. Nephrol Dial Transplant 2020; 35(5): 810–818. DOI: 10.1093/ndt/gfy284
23. Bernard O., Guillemette C. The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occurring variants. Drug Metab Dispos 2004; 32(8): 775–778. DOI: 10.1124/dmd.32.8.775
24. Rong Y., Jun H., Kiang T.K.L. Population pharmacokinetics of mycophenolic acid in paediatric patients. Br J Clin Pharmacol 2021; 87(4): 1730–1757. DOI: 10.1111/bcp.14590
25. Djebli N., Picard N., Rérolle J.P., Le Meur Y., Marquet P. Influence of the UGT2B7 promoter region and exon 2 polymorphisms and comedications on Acyl-MPAG production in vitro and in adult renal transplant patients. Pharmacogenet Genomics 2007; 17(5): 321–330. DOI: 10.1097/FPC.0b013e32801430f8
Review
For citations:
Pakhomova V.P., Morozov S.L., Voinova V.Yu., Shimanova A.B. The potential of pharmacotranscriptomic markers for predicting mycophenolic acid efficacy in children with steroid-dependent nephrotic syndrome. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2024;69(5):65-74. (In Russ.) https://doi.org/10.21508/1027-4065-2024-69-5-65-74