Preview

Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Whole-genome sequencing for the identification of uniparental disomy

https://doi.org/10.21508/1027-4065-2025-70-1-11-17

Abstract

Uniparental disomy is a type of chromosomal variation leading to in which both homologous chromosomes or chromosomal regions are inherited from one parent. Such variations have been detected for all chromosomes. The frequency of uniparental disomies is estimated at 1 case per 2000 births. The causes of uniparental disomies include errors during meiosis, postzygotic errors, Robertsonian and reciprocal translocations. Clinical manifestations are associated with loss of heterozygosity for pathogenic genetic variants and defects in genomic imprinting.
Currently, the diagnosis of uniparental disomy is performed using methods such as microsatellite analysis, chromosomal microarray analysis, methyl-sensitive PCR, methyl-specific amplification of a probe dependent on multiplex ligation and next-generation sequencing (NGS). The methods used nowadays separately do not allow for a definitive diagnosis of uniparental disomy. A combination of NGS method that simultaneously assesses the DNA methylation status and regions of loss of heterozygosity, in particular those based on fragmentation of genomic DNA by methyl-dependent restriction enzymes, with classical approaches such as methyl-sensitive PCR and microsatellite testing will enable rapid and accurate diagnosis of uniparental disomies.

About the Authors

P. A. Suchko
Surgut State University; Saint Petersburg State University
Russian Federation

Surgut

Saint-Petersburg



A. A. Danilova
Saint-Petersburg State Chemical and Pharmaceutical University
Russian Federation

Saint-Petersburg



E. V. Pinkovskaya
Surgut State University; Saint Petersburg State University
Russian Federation

Surgut

Saint-Petersburg



O. S. Glotov
Pediatric Research and Clinical Center for Infectious Diseases; Ott Research Institute of Obstetrics, Gynecology and Reproductology
Russian Federation

Saint-Petersburg



L. G. Danilov
Surgut State University; Saint Petersburg State University
Russian Federation

Surgut

Saint-Petersburg



References

1. Matsubara K., Kagami M., Fukami M. Uniparental disomy as a cause of pediatric endocrine disorders. Clinical pediatric endocrinology: case reports and clinical investigations. Official journal of the Japanese Society for Pediatric Endocrinology 2018; 27(3): 113–121. DOI: 10.1297/cpe.27.113

2. Chien S.C., Chen C.P., Liou J.D. Prenatal diagnosis and genetic counseling of uniparental disomy. Taiwan J Obstet Gynecol 2022; 61(2): 210–215. DOI: 10.1016/j.tjog.2022.02.006

3. Liehr T. Uniparental disomy is a chromosomic disorder in the first place. Mol Cytogenet 2022; 15(1): 5. DOI: 10.1186/s13039–022–00585–2

4. Del Gaudio D., Shinawi M., Astbury C., Tayeh M.K., Deak K. L., Rac G. et al. Diagnostic testing for uniparental disomy: a points to consider statement from the American College of Medical Genetics and Genomics (ACMG). Genetics in medicine: official journal of the American College of Medical Genetics 2020; 22(7): 1133–1141. DOI: 10.1038/s41436–020–0782–9

5. 23andMe Inc. https://www.23andme.com/ Ссылка активна на 28.02.2024

6. UK Biobank https://www.ukbiobank.ac.uk/ Ссылка активна на 28.02.2024

7. Nakka P., Pattillo Smith S., O’Donnell-Luria A.H., Mc-Manus K.F.; 23andMe Research Team; Mountain J.L. et al. Characterization of Prevalence and Health Consequences of Uniparental Disomy in Four Million Individuals from the General Population. Am J Hum Genet 2019; 105(5): 921–932. DOI: 10.1016/j.ajhg.2019.09.016

8. Liehr T. 2024. Cases with uniparental disomy. https://cs-tl.de/DB/CA/UPD/0-Start.html Ссылка активна на 06.02.2024

9. Benn P. Uniparental disomy: Origin, frequency, and clinical significance. Prenat Diagn 2021; 41(5): 564–572. DOI: 10.1002/pd.5837

10. Baranov V.S., Kuznetsova T.V. Cytogenetics of human embryonic development: scientific and practical aspects. Uniparental disomy. Saint-Petersburg: N–L Publishing House, Textbook, 2007; 7.3: 234–266. (in Russ.)

11. Chavli E.A., Klaasen S.J., Van Opstal D., Laven J.S., Kops G.J., Baart E.B. Single-cell DNA sequencing reveals a high incidence of chromosomal abnormalities in human blastocysts. J Clin Invest 2024; 4:e174483. DOI: 10.1172/JCI174483

12. Papenhausen P.R., Kelly C.A., Harris S., Caldwell S., Schwartz S., Penton A. Clinical significance and mechanisms associated with segmental UPD. Mol Cytogenet 2021; 14(1): 38. DOI: 10.1186/s13039–021–00555–0

13. Poot M., Hochstenbach R. Prevalence and Phenotypic Impact of Robertsonian Translocations. Mol Syndromol 2021; 12(1): 1–11. DOI: 10.1159/000512676

14. Baranov V.S., Kogan I.Yu., Kuznecova T.V. Advances in Developmental Genetics and Assisted Reproductive Technology Achievments. Genetika 2019; 55(10): 1109–1121. (in Russ.) DOI: 10.1134/S0016675819100023

15. Demidova I.A., Vorsanova S.G., Kurinnaya O.S., Vasin K.S., Voinova V.Y., Zelenova M.A. et al. Molecular karyotyping of chromosomal anomalies and DNA sequence copy number variations (CNVs) in idiopathic forms of mental retardation and epilepsy. Nauchnye rezul’taty biomedicinskih issledovanij 2020; 6(2): 172–197. (in Russ.) DOI: 10.18413/2658–6533–2020–6–2–0–3

16. Liehr T. Uniparental disomy (UPD) in clinical genetics: A guide for clinicians and patients. Springer, 2014; 192.

17. Korovkina E.A., Zhilina S.S., Konyukhova M.B., Nemtsova M.V., Karmanov M.Y., Mutovin G.R. Silver–Russell syndrome: A clinical and genetic analysis. Pediatrija. Zhurnal im. G.N. Speranskogo 2011; 90(6): 41–45. (in Russ.)

18. hafizova N.R., Merzlyakova D.R., Safina Y.F. Silver–Russel syndrome in a 7-month-old child: a clinical observation. RMZh. Mat’ i ditja 2021; 4(1): 103–105. (in Russ.)

19. Gorchkhanova Z.K., Nikolaeva E.A., Bochenkov S.V., Belousova E.D. Analysis of clinical manifestations of Angelman syndrome in children, Rossijskij vestnik perinatologii i pediatrii 2021; 6: 63–70. (in Russ.)

20. Abaturov A.E., Petrenko L.L., Krivusha E.L. Angelman syndrome. Part 2 (clinic and diagnosis). Zdorov’e rebenka 2015; 6(66): 119–125. (in Russ.)

21. Sologinenko V.G. Neonatology: national guide. Birth defects and genetic syndromes. Еd. by N.N. Volodin. Moscow: GEOTAR-Media, 2019; 519–545. (in Russ.)

22. Krishchanovich D.D., Artyushevskaya M.V., Kachan S.E., Demidovich T.V., Rumyanceva N.V., Voropaj L.V. Beckwith–Wiedemann syndrome: clinical case, clinical and genetic markers. FORCIPE. 2022; 5(2): 283–284. (in Russ.)

23. Semenova N.A., Anisimova I.V., Volodin I.V., Stupina A.V., Abdraisova A.T., Tsokova I.B. et al. Deletion of imprinted region 14q32.2 in a patient with Kagami–Ogata syndrome. Medicinskaja genetika 2018; 17(11): 43–47. (in Russ.) DOI: 10.25557/2073–7998.2018.11.43–47

24. Hurs O.M., Polityko A.D., Rumyanceva N.V., Isakovich L.V., Kulak V.D., Kvasnikova N.V. Prader–Willi syndrome in Belarus: genetic structure and phenotypic characteristics. Vescі Nacyjanal’naj akadjemіі navuk Belarusі. Seryja medycynskіh navuk 2010; 1: 5–10. (in Russ.)

25. Vashukova E.S., Tarasenko O.A., Kozyulina P.Yu., Morshneva A.V., Maltseva A.R., Glotov A.S. Evaluation of the whole-genome non-invasive prenatal testing effectiveness for detection of rare chromosomal abnormalities based on the Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott experience. Medicinskaja genetika 2022; 21(11): 19–22. (in Russ.) DOI: 10.25557/2073–7998.2022.11.19–22

26. Clinical Application of an Innovative Multiplex-Fluorescent-Labeled STRs Assay for Prader-Willi Syndrome and Angelman Syndrome. PLoS One 2016; 11(2): e0147824. DOI: 10.1371/journal.pone.0147824

27. Eggermann K., Bliek J., Brioude F., Algar E., Buiting K., Russo S., et al. EMQN best practice guidelines for the molecular genetic testing and reporting of chromosome 11p15 imprinting disorders: Silver–Russell and Beckwith–Wiedemann syndrome. Eur J Hum Genet 2016; 24: 1377–1387. DOI 10.1038/ejhg.2016.45

28. Su H., Sun T., Chen M., Liu J., Wang X., Chen Y., et al. Multiple methods used for type detection of uniparental disomy in paternity testing. Int J Legal Med 2020; 134(3): 885–893. DOI: 10.1007/s00414–019–02215-w

29. Chernov A.N., Glotov O.S., Donnikov M.Yu., Kovalenko L.V., Belocerkovceva L.D., Glotov A.S. Prenatal genetic diagnosis: principles, methods, applications and prospects. Vestnik SurGU. Medicina 2020; 2(44): 54–65. (in Russ.)

30. Hoppman N., Rumilla K., Lauer E., Kearney H., Thorland E. Patterns of homozygosity in patients with uniparental disomy: detection rate and suggested reporting thresholds for SNP microarrays. Genet Med 2018; 20(12): 1522–1527. DOI: 10.1038/gim.2018.24

31. Sahoo T., Dzidic N., Strecker M.N., Commander S., Travis M.K., Doherty C. et al. Comprehensive genetic analysis of pregnancy loss by chromosomal microarrays: outcomes, benefits, and challenges. Genet Med 2017; 19(1): 83–89. DOI: 10.1038/gim.2016.69

32. Xu C., Li M., Gu T., Xie F., Zhang Y., Wang D., et al. Chromosomal microarray analysis for prenatal diagnosis of uniparental disomy: a retrospective study. Mol Cytogenet 2024; 17(1): 3. DOI: 10.1186/s13039–023–00668–8

33. Lebedev I.N., Shilova N.V., Iourov I.Yu., Malysheva O.V., Tveleneva A.A., Minzhenkova M.E. et al. Guidelines of the Russian Society of Medical Geneticists for Chromosomal Microarray Analysis. Medicinskaya genetika 2023; 22(10): 3–47. (in Russ.)

34. Sazhenova E.A., Lebedev I.N. Standards of molecular genetic DNA diagnostics of genomic imprinting diseases on the example of Prader–Willi and Engelman syndromes. Medicinskaya genetika 2015; 14(9): 3–10. (in Russ.)

35. Hong D.K., Park J.E., Kang K.M., Shim S.H., Shim S.H., Han Y.J. et al. Prenatal Diagnosis of Uniparental Disomy in Cases of Rare Autosomal Trisomies Detected Using Noninvasive Prenatal Test: A Case of Prader–Willi Syndrome. Diagnostics (Basel) 2023; 13(4): 580. DOI: 10.3390/diagnostics13040580

36. Bryzgunova O.E., Laktionov P.P. Current methods of extracellular DNA methylation analysis. Molekuljarnaja biologija 2017; 51(2): 195–214. (in Russ). DOI: 10.7868/S0026898417010074

37. Dos Santos J.F., Mota L.R., Rocha P.H., Ferreira de Lima R.L. A modified MS-PCR approach to diagnose patients with Prader-Willi and Angelman syndrome. Mol Biol Rep 2016; 43(11): 1221–1225. DOI: 10.1007/s11033–016–4055–2

38. Kim B., Park Y., Cho S.I., Kim M.J., Chae J.H., Kim J.Y. et al. Clinical Utility of Methylation-Specific Multiplex Ligation-Dependent Probe Amplification for the Diagnosis of Prader–Willi Syndrome and Angelman Syndrome. Ann Lab Med 2022;42(1): 79–88. DOI: 10.3343/alm.2022.42.1.79.

39. Ribeiro Ferreira I., Darleans Dos Santos Cunha W., Henrique Ferreira Gomes L., Azevedo Cintra H., Lopes Cabral Guimarães Fonseca L., Ferreira Bastos E. et al. A rapid and accurate methylation-sensitive high-resolution melting analysis assay for the diagnosis of Prader Willi and Angelman patients. Mol Genet Genomic Med 2019; 7(6): e637. DOI: 10.1002/mgg3.637

40. Meyer R., Begemann M., Hübner C.T., Dey D., Kuechler A., Elgizouli M. One test for all: whole exome sequencing significantly improves the diagnostic yield in growth retarded patients referred for molecular testing for Silver–Russell syndrome. Orphanet J Rare Dis 2021; 16(1): 42. DOI: 10.1186/s13023–021–01683-x

41. Xiao B., Wang L., Liu H., Fan Y., Xu Y., Sun Y. et al. Uniparental isodisomy caused autosomal recessive diseases: NGSbased analysis allows the concurrent detection of homogenous variants and copy-neutral loss of heterozygosity. Mol Genet Genomic Med 2019; 7(10): e00945. DOI: 10.1002/mgg3.945

42. Scuffins J., Keller-Ramey J., Dyer L., Douglas G., Torene R., Gainullin V., et al. Uniparental disomy in a population of 32,067 clinical exome trios. Genet Med 2021; 23(6): 1101–1107. DOI: 10.1038/s41436–020–01092–8

43. Bis D.M., Schüle R., Reichbauer J., Synofzik M., Rattay T.W., Soehn A. et al. Uniparental disomy determined by whole-exome sequencing in a spectrum of rare motoneuron diseases and ataxias. Mol Genet Genomic Med 2017; 5: 280–286. DOI: 10.1002/mgg3.285

44. Wang L., Liu P., Bi W., Sim T., Wang X., Walkiewicz M. et al. Contribution of uniparental disomy in a clinical trio exome cohort of 2675 patients. Mol Genet Genomic Med 2021; 9(11): e1792. DOI: 10.1002/mgg3.1792

45. Song J., Shao H. SNP Array in Hematopoietic Neoplasms: A Review. Microarrays (Basel) 2015; 5(1): 1. DOI: 10.3390/microarrays5010001

46. Eggermann T., Mackay D.J.G., Tömer Z. Uniparental Disomy and Imprinting Disorders. OBM Genetics 2018; 2(3): 031. DOI: 10.21926/obm.genet.1803031

47. Yauy K., de Leeuw N., Yntema H.G., Pfundt R., Gilissen C. Accurate detection of clinically relevant uniparental disomy from exome sequencing data. Genet Med 2020; 22(4): 803–808. DOI: 10.1038/s41436–019–0704-x

48. Radtke M., Moch J., Hentschel J., Schumann I. altAFplotter: a web app for reliable UPD detection in NGS diagnostics. bioRxiv 2023.08.08.546838. DOI: 10.1101/2023.08.08.546838

49. Gouil Q., Keniry A. Latest techniques to study DNA methylation. Essays Biochem 2019; 63(6): 639–648. DOI: 10.1042/EBC20190027

50. Ishida M. New developments in Silver–Russell syndrome and implications for clinical practice. Epigenomics 2016; 8(4): 563–580. DOI: 10.2217/epi-2015–0010

51. Yong W.S., Hsu F.M., Chen P.Y. Profiling genome-wide DNA methylation. Epigenetics Chromatin 2016; 9: 26. DOI: 10.1186/s13072–016–0075–3

52. Yamada M., Okuno H., Okamoto N., Suzuki H., Miya F., Takenouchi T. et al. Diagnosis of Prader–Willi syndrome and Angelman syndrome by targeted nanopore long-read sequencing. Eur J Med Genet 2023; 66(2): 104690. DOI: 10.1016/j.ejmg.2022.104690

53. Aberg K.A., Chan R.F., van den Oord E.J.C.G. MBD-seq — realities of a misunderstood method for high-quality methylome-wide association studies. Epigenetics 2020; 15(4): 431–438. DOI: 10.1080/15592294.2019.1695339

54. Xing X., Zhang B., Li D., Wang T. Comprehensive Whole DNA Methylome Analysis by Integrating MeDIP-seq and MRE-seq. Methods Mol Biol 2018; 1708: 209–246. DOI: 10.1007/978–1–4939–7481–8_12

55. Abdurashitov M.A., Tomilov V.N., Gonchar D.A., Kuznetsov V.V., Degtyarev S.K. Mapping of R(5mC)GY Sites in the Genome of Human Malignant Cell Line Raji. Biol Med (Aligarh) 2015; 7(4): BM-135–15, 6 pages.

56. Boers R., Boers J., de Hoon B., Kockx C., Ozgur Z., Molijn A. et al. Genome-wide DNA methylation profiling using the methylation-dependent restriction enzyme LpnPI. Genome Res 2018; 28(1): 88–99. DOI: 10.1101/gr.222885.117

57. Abdurashitov M.A., Tomilov V.N., Gonchar D.A., Snezhkina A.V., Krasnov G.S., Kudryavtseva A.V. et al. Comparative Analysis Of RCGY Sites Methylation In Three Human Cell Lines. Epigenetic DNA diagnostics 2019; 1. DOI: 26213/SE.2019.76.40116


Review

For citations:


Suchko P.A., Danilova A.A., Pinkovskaya E.V., Glotov O.S., Danilov L.G. Whole-genome sequencing for the identification of uniparental disomy. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2025;70(1):11-17. (In Russ.) https://doi.org/10.21508/1027-4065-2025-70-1-11-17

Views: 386


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)