Cytokine profile in children with mono- and mixed COVID-19 and herpesvirus infections
https://doi.org/10.21508/1027-4065-2025-70-5-56-62
Abstract
Study aim is to assess the clinical significance of changes in the cytokine profile in children with mononucleosis-like syndrome associated with SARS-CoV-2 and herpesvirus infection.
Materials and methods. The study included 100 children hospitalized with a diagnosis of COVID-19, herpesvirus infection, with clinical manifestations of mononucleosis-like syndrome. Group 1 consisted of 15 patients with COVID-19 combined with herpesvirus infection (SI, n=15); group 2 — 27 children with COVID-19 without herpesvirus infection; group 3 — 58 patients with active herpesvirus infection. The levels of cytokines (IL-1, IL-2, IL-4, IL-6, IL-8, IL-10, TNF-α, IFN-α, IFN-γ) in the blood were investigated, and the relationship between the obtained results and clinical-laboratory parameters was assessed.
Results. The levels of IL-4 (16.4 pg/mL) and IL-10 (32.9 pg/mL) were the highest in the CoI group. Significant elevation of major proinflammatory cytokines (IL-1, IL-6, IL-8, TNF-α) was not observed, excepting IL-2. The level of IL-2 was approximately twice the normal value in the co-infection group (23.3 pg/mL) and significantly higher in the COVID-19 monoinfection group (52 pg/ mL) and in monovariant herpesvirus infections (57.4 pg/mL). Correlation analysis revealed associations between changes in proinflammatory cytokine levels and the duration of hospitalization, fever (IL-2, IL-8), dyspnea (IL-1, IL-2, IL-6, IL-8, TNF-α), and lymphadenopathy (IL-1, IL-6, TNF-α); similar effects were recorded for IFN-γ.
Discussion and conclusion. The cytokine profile in children with combined SARS-CoV-2 and herpesvirus infection is characterized by a moderate increase in IL-2 levels, which indirectly indicates suppression of proliferation and differentiation of CD8⁺ lymphocytes — key factors in the immunological surveillance of latent herpesviruses. Increased production of IL-4 and IL-10 in CoI demonstrates a shift in the immune response towards a Th2 profile. The obtained data suggest that active SARS-CoV-2 infection creates conditions for the reactivation of latent herpesviruses.
About the Authors
V. A. PozdnyakRussian Federation
420012, Kazan
S. V. Khaliullina
Russian Federation
420012, Kazan
V. A. Anokhin
Russian Federation
420012, Kazan
Yu. A. Raimova
Russian Federation
420012, Kazan
I. Kh. Valeeva
Russian Federation
420012, Kazan
I. D. Garipova
Russian Federation
420110, Kazan
L. I. Tagirova
Russian Federation
420012, Kazan
S. A. Kartashova
Russian Federation
420012, Kazan
References
1. Facciolà A., Laganà A., Genovese G., Romeo B., Sidoti S., D’Andrea G., et al. Impact of the COVID-19 pandemic on the infectious disease epidemiology. J Prev Med Hyg. 2023; 64(3):E274-E282. DOI: 10.15167/2421-4248/jpmh2023.64.3.2904
2. Hirae K., Hoshina T., Koga H. Impact of the COVID-19 pandemic on the epidemiology of other communicable diseases in Japan. Int J Infect Dis. 2023; 128: 265–271. DOI: 10.1016/j.ijid.2023.01.013
3. Davitt E., Davitt C., Mazer M.B., Areti S.S., Hotchkiss R.S., Remy K.E. COVID-19 disease and immune dysregulation. Best Pract Res Clin Haematol. 2022; 35(3): 101401. DOI: 10.1016/j.beha.2022.101401
4. Kanduc D. SARS-CoV-2-Induced Immunosuppression: A Molecular Mimicry Syndrome. Glob Med Genet. 2022; 9(3): 191–199. DOI: 10.1055/s-0042-1748170
5. Magalhães V.G., Lukassen S., Drechsler M., Loske J., Burkar S.S., Wüst S., et al. Immune–epithelial cell cross-talk enhances antiviral responsiveness to SARS-CoV-2 in children. EMBO Rep. 2023; 24(12):e57912. DOI: 10.15252/embr.202357912
6. Demirhan S., Goldman D.L., Herold B.C. Differences in the Clinical Manifestations and Host Immune Responses to SARS-CoV-2 Variants in Children Compared to Adults. J Clin Med. 2023; 13(1): 128. DOI: 10.3390/jcm13010128
7. Jia R., Li Z., Hu S., Chang H., Zeng M., Liu P., et al. Immunological characterization and comparison of children with COVID-19 from their adult counterparts at single-cell resolution. Front Immunol. 2024; 15: 1358725. DOI: 10.3389/fimmu.2024.1358725
8. Korinteli I., Javakhadze M., Gelazonia L., Gubelidze N, Janashia N. COVID-19 and Epstein-Barr virus in children, post pandemic challenge. Experimental and Clinical Medicine Georgia. 2024;(2): 79–81. DOI: 10.52340/jecm.2024.02.16
9. Shafiee A., Aghajanian S., Athar M.M.T., Gargari O.K. Epstein–Barr virus and COVID-19. J Med Virol. 2022; 94(9): 4040–4042. DOI: 10.1002/jmv.27823
10. Khaliullina S.V., Anokhin V.A., Raimova Ya.A., Nasyrova E.I., Sabitova A.M., Evdokimovа A.E., Mannanova E.F. T-cell immunity status of children with combined infection with SARS-CoV-2 and human herpesviruses. Rossiyskiy Vestnik Perinatologii i Pediatrii. 2023; 68(5): 37–44. (in Russ.) DOI: 10.21508/1027-4065-2023-68-5-37-44
11. Capobianco M.P., Cassiano G.C., Furini A.A. da C., Melo L.M.S., Domingos C.R.B., Machado R.L.D. Human Interleukin 2 (IL-2) Promotion of Immune Regulation and Clinical Outcomes: A Review. J Cytokine Biol. 2016; 1(2): 1–4. DOI: org/10.4172/2576-3881.1000109
12. Fawzy S., Ahmed M.M., Alsayed B.A., Mir R., Amle D. IL-2 and IL-1β Patient Immune Responses Are Critical Factors in SARS-CoV-2 Infection Outcomes. J Pers Med. 2022; 12(10): 1729. DOI: 10.3390/jpm12101729
13. Bendickova K., Fric J. Roles of IL-2 in bridging adaptive and innate immunity, and as a tool for cellular immunotherapy. J Leukoc Biol. 2020; 108(1): 427–437. DOI: 10.1002/JLB.5MIR0420-055R
14. Chen T., Song J., Liu H., Zheng H., Chen C. Positive Epstein– Barr virus detection in coronavirus disease 2019 (COVID-19) patients. Sci Rep. 2021; 11: 10902. DOI: 10.1038/s41598-021-90351-y
15. Paolucci S., Cassaniti I., Novazzi F., Fiorina L., Piralla A. EBV DNA increase in COVID-19 patients with impaired lymphocyte subpopulation count. Int J Infect Dis. 2021; 104: 315–319. DOI: 10.1016/j.ijid.2020.12.051
16. Najafi-Fard S., Petruccioli E., Farroni C., Petroni L., Vanini V., Cuzzi G., et al. Evaluation of the immunomodulatory effects of interleukin-10 on peripheral blood immune cells of COVID-19 patients: Implication for COVID-19 therapy. Front Immunol. 2022; 13: 984098. DOI: 10.3389/fimmu.2022.984098
17. Nelson C.E., Foreman T.W., Fukutani E.R., Kauffman K.D., Sakai S., Fleegle J.D., et al. IL-10 suppresses T cell expansion while promoting tissue-resident memory cell formation during SARS-CoV-2 infection in rhesus macaques. PLoS Pathog. 2024; 20(7):e1012339. DOI: 10.1371/journal.ppat.1012339
18. Gabryšová L., Howes A., Saraiva M., O’Garra A. The regulation of IL-10 expression. Curr Top Microbiol Immunol. 2014; 380: 157–190. DOI: 10.1007/978-3-662-43492-5_8
19. Lazarski C.A., Ford J., Katzman S.D., Rosenberg A.F., Fowell D.J. IL-4 Attenuates Th1-Associated Chemokine Expression and Th1 Trafficking to Inflamed Tissues and Limits Pathogen Clearance. PLoS One. 2013; 8(8):e71949. DOI: 10.1371/journal.pone.0071949
20. Hoang H.D., Naeli P., Alain T., Jafarnejad S.M. Mechanisms of impairment of interferon production by SARS-CoV-2. Biochem Soc Trans. 2023; 51(3): 1047–1056. DOI: 10.1042/BST20221037
21. Grigoryeva N.Yu., Sinichkina A.A., Samoliuk M.O., Kolosova K.S., Korolеva E.V., Kondakova E.V., Vedunova M.V. Cytokine profile in hospitalized patients with COVID-19 of different severity. Rossijskij kardiologicheskij zhurnal. 2022; 27(3): 4846. (in Russ.) DOI: 10.15829/1560-4071-2022-4846
22. Ling L., Chen Z., Lui G., Wong C.K., Wong W.T., Ng R.W.Y., et al. Longitudinal Cytokine Profile in Patients With Mild to Critical COVID-19. Front Immunol. 2021; 12: 763292. DOI: 10.3389/fimmu.2021.763292
23. Atazhakhova M.G., Chudilova G.A., Lomtatidze L.V., Poezzhaev E.A. Variability of changes in pro- and antiinflammatory cytokines due to IFNα and IFNγ deficiency in patients with post-COVID syndrome associated with activation of chronic herpes viral infections. Infektsiya i immunitet. 2024; 14(3): 488–494. (in Russ.) DOI: 10.15789/2220-7619-VOC-16749
24. Farooq I., Eachkoti R., Haq I., Hussain S., Tanvir M., Farooq S., et al. Cytokine Profile Associated with COVID-19 Severity and Outcome: A Hospital-Based Study from Kashmir, North India. European Medical Journal (EMJ). 2024; 9(3): 94–104. DOI: 10.33590/emj/EMCE4327
25. Queiroz M.A.F., Neves P.F.M., Lima S.S., Lopes J.C., Torres M.K.S., Vallinoto I.M.V.C., et al. Cytokine Profiles Associated With Acute COVID-19 and Long COVID-19 Syndrome. Front Cell Infect Microbiol. 2022; 12: 922422. DOI: 10.3389/fcimb.2022.922422
Review
For citations:
Pozdnyak V.A., Khaliullina S.V., Anokhin V.A., Raimova Yu.A., Valeeva I.Kh., Garipova I.D., Tagirova L.I., Kartashova S.A. Cytokine profile in children with mono- and mixed COVID-19 and herpesvirus infections. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2025;70(5):56-62. (In Russ.) https://doi.org/10.21508/1027-4065-2025-70-5-56-62





































