Leukoencephalopathy, developmental delay, and episodic neurological regression syndrome (LEUDEN)
https://doi.org/10.21508/1027-4065-2025-70-6-68-76
Abstract
We describe a clinical case of leukencephalopathy, developmental delay, and episodic neurologic regression (LEUDEN, OMIM 618877) associated with variants in the EIF2AK2 gene, with an emphasis on clinico-pathogenetic links and potential therapeutic targets. A 2-year-old boy presented with psychomotor delay, spastic tetraparesis, and fever-induced episodes of regression; brain MRI showed hypomyelination and white-matter atrophy. Whole-exome sequencing identified a de novo pathogenic EIF2AK2 variant, c.325G>T (p.Ala109Ser, NM_001135651.3). The synthesis of clinical, neuroimaging, and genetic data is consistent with chronic hyperactivation of the integrated stress response (ISR) via the PKR–eIF2α pathway, leading to sustained eIF2α phosphorylation, impaired synthesis of myelin proteins, activation of apoptosis, and synaptic dysfunction; external stressors (infections) act as triggers of transient deterioration manifesting as regression of skills. The phenotype may mimic cerebral palsy with episodes of regression, underscoring the need for early molecular genetic confirmation in pediatric hypomyelination. The pathogenetic involvement of the ISR highlights the promise of targeted modulation of this pathway (e.g., ISR inhibitors), although the clinical efficacy of such strategies in LEUDEN requires further evaluation in controlled studies; early diagnosis and patient stratification are key to developing personalized treatment approaches.
About the Authors
T. S. KaminskayaRussian Federation
119620, Moscow
A. I. Krapivkin
Russian Federation
119620, Moscow
G. S. Vasiliev
Russian Federation
117997, Moscow
A. A. Dokshukina
Russian Federation
117997, Moscow
N. P. Prokopyeva
Russian Federation
119620, Moscow
A. A. Pashkov
Russian Federation
143081, Moscow Region
T. E. Areyan
Russian Federation
119048, Moscow
E. B. Batomunkueva
Russian Federation
119048, Moscow
References
1. Pakos-Zebrucka K., Koryga I., Mnich K., Ljujic M., Samali A., Gorman A.M. The integrated stress response. EMBO Rep. 2016; 17(10): 1374–1395. DOI: 10.15252/embr.201642195
2. Todd D.J., Lee A.H., Glimcher L.H. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol. 2008; 8(9): 663–674. DOI: 10.1038/nri2359
3. Rabouw H.H., Langereis M.A., Anand A.A., Visser L.J., de Groot R.J., Walter P., et al. Small molecule ISRIB suppresses the integrated stress response within a defined window. Mol Cell. 2020; 78(2): 350–361.e6. DOI: 10.1073/pnas.1815767116
4. Costa-Mattioli M., Walter P. The integrated stress response: from mechanism to disease. Science. 2020; 368(6489): eaat5314. DOI: 10.1126/science.aat5314
5. Tovi M., Gershoni-Emek N., Avraham Y., Shohami E., Gozes I. PKR: a possible target in neurodegeneration. Brain Res. 2021; 1750: 147170. DOI: 10.1016/j.brainres.2020.147170
6. Tsai J.C., Miller-Vedam L.E., Anand A.A., Jaishankar P., Nguyen H.C., Renslo A.R., et al. Structure of the nucleotide exchange factor eIF2B reveals mechanism of memory-- enhancing molecule ISRIB. Science. 2018; 359(6383): eaaq0939. DOI: 10.1126/science.aaq0939
7. Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-- Foster J., et al. Standards and guidelines for the interpretation of sequence variants. Genet Med. 2015; 17(5): 405–424. DOI: 10.1038/gim.2015.30
8. Potrokhova E.A., Babayan M.L., Baleva L.S., Safonova M.P., Sipyagina A.E. Bardet–Biedl Syndrome. Rossiyskiy Vestnik Perinatologii i Pediatrii 2020; 65(6): 76–83. (in Russ.) DOI: 10.21508/1027-4065-2020-65-6-76-83
9. Kuznetsova E.B., Smirnova L.S., Gorbunova V.M. Orphan genetic diseases in children: diagnostic challenges. Voprosy Sovremennoi Pediatrii 2019; 18(2): 108–115. (in Russ.) DOI: 10.15690/vsp.v18i2.2105
10. Lobzina M.E., Pushkarev A.V. Molecular diagnostics in children with neurological symptoms. Nevrologiya, Neyropsikhiatriya, Psikhosomatika 2022; 14(1): 32–39. (in Russ.) DOI: 10.14412/2074-2711-2022-1-32-39
11. Panova I.V., Rogozina M.A., Klimova I.V. Diagnosis of rare diseases in children: role of clinical reasoning. Pediatricheskaya Farmakologiya 2019; 16(3): 242–247. (in Russ.) DOI: 10.15690/pf.v16i3.2102
12. Soloviev A.A., Abrosimova E.S., Ignatova S.M. Spastic conditions in children: diagnosis and rehabilitation. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova 2021; 121(3–2): 72–77. (in Russ.) DOI: 10.17116/jnevro202112103272
13. Burkova T.V., Zakharova N.E. Mitochondrial diseases in children: clinical manifestations and therapeutic approaches. Lechashchiy Vrach 2018;(5): 16–21. (in Russ.)
14. Khabrieva A.R., Yakovleva S.V., Sergienko E.A. Diagnostic strategy in developmental regression in children. Rossiyskaya Pediatriya (Russian Pediatrics). 2020; 13(2): 101–106. (in Russ.)
15. Prokopenko N.N., Mikhaylova I.V. Genetic strategies for identifying rare neurometabolic syndromes in children. Meditsinskiy Sovet (Medical Council). 2022;(10): 24–30. (in Russ.) DOI: 10.21518/2079-701X-2022-10-24-30
16. Dey M., Trieselmann N., Thoreen C.C., Park E. Regulation of myelination by ISR signaling in glial cells. Nat Neurosci. 2021; 24(10): 1421–1433. DOI: 10.1038/s41593-021-00901-2
17. Yamada T., Goto T., Ishiura H. Differential diagnosis of neurodevelopmental regression: approach and pitfalls. Brain Dev. 2020; 42(6): 405–412. DOI: 10.1016/j.braindev.2020.02.004
18. Lu P.D., Harding H.P., Ron D. Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J Cell Biol. 2004; 167(1): 27–33. DOI: 10.1083/jcb.200408003
19. Bertero A., Coté J. Genetic and epigenetic control of the integrated stress response. Trends Genet. 2022; 38(9): 845–858. DOI: 10.1016/j.tig.2022.03.007
20. Liu Y., Jiang L., Liu Y., Wu L., Sun Y., Xu Y., et al. EIF2AK2 variant causes episodic neurological regression via impaired ISR control: a case report. Orphanet J Rare Dis. 2023; 18(1): 45. DOI: 10.1186/s13023-023-02627-9
21. Sakurai K., Wang S., Matsumoto T., Zhao Y. eIF2α phosphorylation and ISR modulation in neural development and disorders. Mol Neurobiol. 2022; 59(12): 7860–7874. DOI: 10.1007/s12035-022-02940-9
22. Thoreen C.C., Chantranupong L., Keys H.R., Wang T., Gray N.S., Sabatini D.M. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature. 2012; 485: 109–113. DOI: 10.1038/nature11083
23. Sidrauski C., McGeachy A.M., Ingolia N.T., Walter P. The small molecule ISRIB reverses the effects of eIF2α phosphorylation on translation and stress granule assembly. eLife. 2015; 4: e05033. DOI: 10.7554/eLife.05033
24. Takanashi J-I., Barkovich A.J. Mitochondrial disorders in children: neuroimaging findings. Neuroradiology. 2020; 62(6): 641–655. DOI: 10.1007/s00234-020-02409-w
25. Liang C., Liu M., Chen J., Zhang Y. Emerging roles of eIF2α kinases in neurological diseases. J Transl Med. 2021; 19(1): 130. DOI: 10.1186/s12967-021-02770-3
Review
For citations:
Kaminskaya T.S., Krapivkin A.I., Vasiliev G.S., Dokshukina A.A., Prokopyeva N.P., Pashkov A.A., Areyan T.E., Batomunkueva E.B. Leukoencephalopathy, developmental delay, and episodic neurological regression syndrome (LEUDEN). Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2025;70(6):68-76. (In Russ.) https://doi.org/10.21508/1027-4065-2025-70-6-68-76
JATS XML




































