Кардиомиопатии при врожденных нарушениях метаболизма у детей


https://doi.org/10.21508/1027-4065-2016-61-2-17-27

Полный текст:


Аннотация

Представлен анализ литературы последних лет, посвященной кардиомиопатиям, развивающимся при наследственных дефектах обмена веществ. Рассмотрены кардиомиопатии как тяжелое проявление первичного дефицита карнитина, дефектов транспорта и β-окисления жирных кислот, органических ацидемий, лизосомных болезней (в том числе болезни Помпе, болезни Данона и др.). Обращено внимание на критерии диагностики указанных заболеваний и возможности лечения.

Об авторах

И. В. Леонтьева
ОСП «Научно-исследовательский клинический институт педиатрии им. академика Ю.Е. Вельтищева» ГБОУ ВПО РНИМУ им. Н.И. Пирогова Минздрава РФ
Россия

д.м.н., проф., гл.н.сотр. отдела кардиологии и аритмологии,

125412 Москва, ул. Талдомская, д.2



Е. А. Николаева
ОСП «Научно-исследовательский клинический институт педиатрии им. академика Ю.Е. Вельтищева» ГБОУ ВПО РНИМУ им. Н.И. Пирогова Минздрава РФ
Россия

д.м.н., и.о. рук.отдела психоневрологии и наследственных заболеваний с нарушением психики,

125412 Москва, ул. Талдомская, д.2



Список литературы

1. Maron B.J., Towbin J.A., ThieneG. et al. Contemporary definitions and classification of the cardiomyopathies. An American Heart Association scientific statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 2006; 113: 1807–1816.

2. Elliott P., Andersson B., Arbustini E. et al Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 2008; 29: 270–276.

3. Wilkinson J.D., Landy D.C., Colan S.D. et al. The pediatric cardiomyopathy registry and heart failure: key results from the first 15 years. Heart Fail Clin 2010; 6: 401–441.

4. Towbin J.A., Lowe A.M., Colan S.D., Sleeper L.A. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA 2006; 296: 15: 1867–1876.

5. Lipshultz S.E., Orav E.J., Wilkinson J.D. et al. Risk stratification at the time of diagnosis for children with hypertrophic cardiomyopathy: a report from the Pediatric Cardiomyopathy Registry Study Group. Lancet 2013; 382: 9908: 1889–1897.

6. Dipchand A.I., Naftel D.C., Feingold B. et al. Outcomes of children with cardiomyopathy listed for transplant: a multi-institutional study. J Heart Lung Transplant 2009; 28: 1312–1321.

7. Bharucha T., Lee K.J., Daubeney P.E. et al. Sudden death in childhood cardiomyopathy: results from a long-term national population-based study. J Am Coll Cardiol 2015; 65: 21: 2302–2301.

8. Byers S.L., Ficicioglu C. Infant with cardiomyopathy: When to suspect inborn errors of metabolism? World J Cardiol 2014; 6: 11: 1149–1155.

9. Cox G.F. Diagnostic approaches to pediatric cardiomyopathy of metabolic genetic etiologies and their relation to therapy. Prog Pediatr Cardiol 2007; 24: 15–25.

10. Kindel S.J., Miller E.M., Gupta R. et al. Pediatric cardiomyopathy: importance of genetic and metabolic evaluation. J Card Fail 2012; 18: 396–403.

11. Леонтьева И.В., Белозеров Ю.М., Сухоруков В.С., Николаева Е.А. Проблемы современной диагностики метаболических кардиомиопатий. Рос вестн перинатол и педиатр 2012; 4(1): 55–63. (Leont’eva I.V., Belozerov Yu.M., Sukhorukov V.S., Nikolaeva E.А. Problem of current diagnosis of metabolic cardiomyopathies. Ros vestn perinatol i pediatr 2012; 4(1): 55–63).

12. Wicks E.C., Elliott P.M. Genetics and metabolic cardiomyopathies. Herz 2012; 37: 598–610.

13. Meyers D.E., Basha H.I., Koenig M.K. Mitochondrial cardiomyopathy: pathophysiology, diagnosis, and management. Tex Heart Inst J 2013; 40: 385–394.

14. Colan S.D., Lipshultz S.E., Lowe A.M. et al. Epidemiology and cause-specific outcome of hypertrophic cardiomyopathy in children: findings from the Pediatric Cardiomyopathy Registry. Circulation 2007; 115: 6: 773–781.

15. Bonnet D., Martin D., de Lonlay P. et al. Arrhythmias and conduction defects as presenting symptoms of fatty acid oxidation disorders in children. Circulation 1999; 100: 2248–2253.

16. Sharma S., Black S.M. Сarnitine homeostasis, mitochondrial function, and cardiovascular disease. Drug Discov Today Dis Mech 2009; 6: 1-4: e31–e39.

17. Löster H. Carnitine and cardiovascular diseases. Ponte Press Verlags-GmbH, 2003; 336.

18. Cederbaum S.D., Koo-McCoy S., Tein I. et al. Carnitine membrane transporter deficiency: a long-term follow up and OCTN2 mutation in the first documented case of primary carnitine deficiency. Mol Genet Metab 2002; 77: 195–201.

19. Pierpont M.E., Breningstall G.N., Stanley C.A. A Familial carnitine transporter defect: A treatable cause of cardiomyopathy in children. Am Heart J 2000; 139: 2: Pt 3: S96–106.

20. Bautsta J., Rafel E., Martines A. Famial hypertrophic cardiomyopathy and muscle carnitine deficiency. Muscle Nerve 1990; 13: 192–194.

21. Angelini C., Vergani L., Martinuzzi A. et al. Clinical and biochemical aspects of carnitine deficiency and insufficiency: transport defects and inborn errors of beta-oxidation. Crit Rev Clin Lab Sci 1992; 29: 3-4: 217–242.

22. Gesuete V., Ragni L., Picchio F.M. The “big heart” of carnitine. G Ital Cardiol (Rome) 2010; 11: 9: 703–705.

23. Николаева Е.А., Леонтьева И.В., Калачанова Е.П., Золкина И.В. Задержка физического развития и кардиомиопатия у ребенка с первичным системным дефицитом карнитина. Трудный пациент 2012; 2-3: 50–54. (Nikolaeva E.А., Leont’eva I.V., Kalachanova E.P., Zolkina I.V. Retardation of physical development and cardiomyopathy in child with primery systemic carnitine deficiency. Trudnyj patsient 2012; 2-3: 50–54.)

24. Леонтьева И.В., Алимина Е.Г., Николаева Е.А. и др. Клиническое значение нарушений метаболизма карнитина в развитии кардиомиопатий у детей. Рос вестн перинатол и педиатр 2013; 1: 34–40. (Leont’eva I.V., Аlimina E.G., Nikolaeva E.А. et al. Clinical significance of carnitine metabolism disturbances in cardiomyopathies formation at children. Ros vestn perinatol i pediatr 2013; 1: 34–40.)

25. Schulze A., Lindner M., Kohlmuller D. et al. Expanded newborn screening for inborn errors of metabolism by electrospray ionization-tandem mass spectrometry: results, outcome and implications. Pediatrics 2003; 111: 6: 1399–1406.

26. Sharma R., Perszyk A., Marangi D. et al. Lethal neonatal carnitine palmitoyltransferase II deficiency: an unusual presentation of a rare disorder. Am J Perinatol 2003; 20: 25–32.

27. Bonnefont J.P., Djouadi F., Prip-Buus C. et al. Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol Aspects Med 2004; 25: 495–520.

28. Rubio-Gozalbo M.E., Bakker J.A., Waterham H.R., Wanders R.J. Carnitine-acylcarnitine translocase deficiency, clinical, biochemical and genetic aspects. Mol Aspects Med 2004; 25: 5–6: 521–532.

29. Николаева Е.А., Мамедов И.С. Диагностика наследственных дефектов обмена жирных кислот у детей. Рос вестн перинатол и педиатр 2008; 6: 37–40. (Nikolaeva E.А., Mamedov I.S. Diagnostics of fatty acids metabolic defects at children. Ros vestn perinatol i pediatr 2008; 6: 37–40.)

30. Parini R., Vegni C., Martini J. et al. Sudden infant death and multiple acyl-CoA dehydrogenation disorders. Eur J Pediatr 1995; 154: 421–422.

31. Леонтьева И.В. Белозеров Ю.М. Диагностика и лечение метаболических кардиомиопатий у детей, возникающих на фоне нарушения обмена жирных кислот. Лечащий врач 2012; 9: 57–63. (Leont’eva I.V. Belozerov Yu.M. Diagostics and treatment of metabolic cardiomyopathies at children with fatty acids metabolism disturbances. Lechashhij vrach 2012; 9: 57–63).

32. Kompare M., Rizzo W.B. Mitochondrial fatty-acid oxidation disorders. Semin Pediatr Neurol 2008; 15: 140–149.

33. Fletcher J.M. Screening for lysosomal storage disorders: a clinical perspective. J Inherit Metab Dis 2006; 29: 2–3: 405–408.

34. Vellodi A. Lysosomal storage disorders. Br J Haematol 2005; 128: 4: 413–431.

35. Tariq M., Ware S. Importance of genetic evaluation and testing in pediatric cardiomyopathy. World J Cardiol 2014; 6: 11: 1156–1165.

36. Arad M., Maron B., Gorham J. Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N Engl J Med 2005; 352: 362–372.

37. Kishnani P.S., Steiner R.D. Pompe disease diagnosis and management guideline. Genetics in Medicine 2006; 8: 5: 267–288.

38. Басаргина Е.Н., Жарова О.П., Архипова Е.Н. и др. Опыт применения ферментозаместительной терапии рекомбинантной человеческой кислой альфа-глюкозидазой у детей с инфантильной формой болезни Помпе. Рос вестн перинатол и педиатр 2013; 58: 6: 58–66. (Basargina E.N.,

39. Zharova O.P., Аrkhipova E.N. et al. Experience of application of enzyme replacement therapy with recombinant human acid alpha-glucosidase in children with infantile form of Pompe disease. Ros vestn perinatol i pediatr 2013; 58: 6: 58–66.)

40. Noori S., Acherman R., Siassi B. et al. A rare presentation of Pompe disease with massive hypertrophic cardiomyopathy at birth. J Perinat Med 2002; 30: 6: 517–521.

41. Van Maldergem L., Haumont D., Saurty D. et al. Bradycardia in a case of type II glycogenosis (Pompe’s disease) revealing in early neonatal period. Acta Clin Belg 1990; 45: 6: 412–414.

42. Fung K.P., Lo R.N., Ho H.C. Pompe’s disease presenting as supraventricular tachycardia. Aust Paediatr J 1989; 25: 2: 101–102.

43. Metzl J.D., Elias E.R., Berul C.I. An interesting case of infant sudden death: severe hypertrophic cardiomyopathy in Pompe’s disease. Pacing Clin Electrophysiol 1999; 22: 5: 821–822.

44. Семячкина А.Н., Сухоруков В.С., Букина Т.М. и др. Болезнь накопления гликогена, тип II (болезнь Помпе) у детей. Рос вестн перинатол и педиатр 2014; 59: 4: 48–55. (Semyachkina А.N., Sukhorukov V.S., Bukina T.M. et al. Glycogen storage disease, type II (Pompe disease) in children. Ros vestn perinatol i pediatr 2014; 59: 4: 48–55.)

45. Jacob J.L., Leandro R.L., Parro Junior A. Pompe’s disease or type IIa glycogenosis. Arq Bras Cardiol 1999; 73: 5: 435–440.

46. Tabarki B., Mahdhaoui A., Yacoub M. et al. Familial hypertrophic cardiomyopathy associated with Wolff-Parkinson-White syndrome revealing type II glycogenosis. Arch Pediatr 2002; 9: 7: 697–700.

47. Hagemans M.L., Winkel L.P., Van Doorn P.A. et al. Clinical manifestation and natural course of late-onset Pompe’s disease in 54 Dutch patients. Brain 2005; 128: Pt 3: 671–677.

48. Klinge L., Straub V., Neudorf U., Vot T. Enzyme replacement therapy in classical infantile pompe disease: results of a tenmonth follow-up study. Neuropediatrics 2005; 36: 1: 6–11.

49. Blair E., Redwood C., Ashrafian H. et al. Mutations in the gamma (2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet 2001; 10: 1215–1220.

50. Sugie K., Yamamoto A., Murayama K. et al. Clinicopathological features of genetically confirmed Danon disease. Neurology 2002; 58: 12: 1773–1778.

51. Boucek D., Jirikowic J., Taylor M. Natural history of Danon disease. Genet Med 2011; 13: 6: 563–568.

52. Tanaka Y., Guhde G., Suter A. et al. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 2000; 406: 6798: 902–906.

53. Maron B.J., Roberts W.C., Arad M. et al. Clinical outcome and phenotypic expression in LAMP2 cardiomyopathy. JAMA 2009; 301: 12: 1253.

54. Леонтьева И.В., Царегородцев Д.А. Болезнь Данона как причина гипертрофической кардиомиопатии. Рос вестн перинатол и педиатр 2015; 3: 36–42. (Leont’eva I.V., Tsaregorodtsev D.А. Danon disease as a cause of hypertrophic cardiomyopathy. Ros vestn perinatol i pediatr 2015; 3: 36–42.)

55. Maron B.J., Roberts W.C., Ho C.Y. et al. Profound left ventricular remodeling associated with LAMP2 cardiomyopathy. Am J Cardiol 2010; 106: 1194–1196.

56. Cheng Z., Fang Q. Danon disease: focusing on heart. J Hum Genet 2012; 57: 7: 407–410.

57. Van Der Starre P., Deuse T., Pritts C. et al. Late profound muscle weakness following heart transplantation due to Danon disease. Muscle Nerve 2013; 47: 1: 135–137.

58. Zaki A., Zaidi A., Newman W.G., Garratt C.J. Advantages of a subcutaneous implantable cardioverter-defibrillator in LAMP2 hypertrophic cardiomyopathy. J Cardiovasc Electrophysiol 2013; 24: 9: 1051–1053.

59. Леонтьева И.В., Царегородцев Д.А. Лизосом-ассоциированная гипертрофическая кардиомиопатия у двух сибсов. Рос вестн перинатол и педиатр 2015; 4: 75–82. (Leont’eva I.V., Tsaregorodtsev D.А. Lysosome-associated hypertrophic cardiomyopathy in two sibs. Ros vestn perinatol i pediatr 2015; 4: 75–82.)

60. Lee P.J., Deanfield J.E., Burch M. et al. Comparison of the functional significance of left ventricular hypertrophy in hypertrophic cardiomyopathy and glycogenosis type III. Am J Cardiol 1997; 79: 6: 834–838.

61. Amin A.S., Kasturi L., Kulkarni A.V., Ajmera N.K. Glycogen storage disease type III. Indian Pediatr 2000; 37: 6: 670–673.

62. Moses S.W., Wanderman K.L., Myroz A., Frydman M. Cardiac involvement in glycogen storage disease type III. Eur J Pediatr 1989; 148: 8: 764–766.

63. Tada H., Kurita T., Ohe T. et al. Glycogen storage disease type III associated with ventricular tachycardia. Am Heart J 1995; 130: 4: 911–912.

64. Akazawa H., Kuroda T., Kim S. et al. Specific heart muscle disease associated with glycogen storage disease type III: clinical similarity to the dilated phase of hypertrophic cardiomyopathy. Eur Heart J 1997; 18: 3: 532–533.

65. Sachdev B., Takenaka T., Teraguchi H. et al. Prevalence of Anderson-Fabry disease in male patients with late onset hypertrophic cardiomyopathy. Circulation 2002; 105: 1407–1411.

66. Ries M., Gupta S., Moore D.F. et al. Pediatric Fabry disease. Pediatrics 2005; 115: 3: e344–355.

67. Palecek T., Lubanda J.C., Magage S. et al. Cardiac manifestation of Fabry’s disease: current knowledge. Vnitr Lek 2004; 50: 11: 846–851.

68. Kampmann C., Baehner F.A., Whybra C. et al. The right ventricle in Fabry disease. Acta Paediatr Suppl 2005; 94: 447: 15–18.

69. Kalliokoski R.J., Kalliokoski K.K., Sundell J. et al. Impaired myocardial perfusion reserve but preserved peripheral endothelial function in patients with Fabry disease. J Inherit Metab Dis 2005; 28: 4: 563–573.

70. Blum A., Ashkenazi H., Haromankov I. et al. First-degree atrioventricular block and restrictive physiology as cardiac manifestations of Fabry’s disease. South Med J 2003; 96: 2: 212–213.

71. Shah J.S., Elliott P.M. Fabry disease and the heart: an overview of the natural history and the effect of enzyme replacement therapy. Acta Paediatr Suppl 2005; 94: 447: 11–14.

72. Hoffmann B., Garcia de Lorenzo A., Mehta A. et al. Effects of enzyme replacement therapy on pain and health related quality of life in patients with Fabry disease: data from FOS (Fabry Outcome Survey). J Med Genet 2005; 42: 3: 247–252.

73. Довгань М.И., Белозеров Ю.М., Семячкина А.Н. Поражение сердца при мукополисахаридозах. Рос вестн перинатол и педиатр 2014; 59: 3: 22–31. (Dovgan’ M.I., Belozerov Yu.M., Semyachkina А.N. Heart damage in mucopolysaccharidosis. Ros vestn perinatol i pediatr 2014; 59: 3: 22–31.)


Дополнительные файлы

Для цитирования: Леонтьева И.В., Николаева Е.А. Кардиомиопатии при врожденных нарушениях метаболизма у детей. Российский вестник перинатологии и педиатрии. 2016;61(2):17-27. https://doi.org/10.21508/1027-4065-2016-61-2-17-27

For citation: Leontyeva I.V., Nikolaeva E.A. Cardiomyopathies in children with inborn errors of metabolism. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2016;61(2):17-27. (In Russ.) https://doi.org/10.21508/1027-4065-2016-61-2-17-27

Просмотров: 272

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)