Preview

Российский вестник перинатологии и педиатрии

Расширенный поиск

Обструктивное апноэ во время сна и риск кардиоваскулярной патологии у детей

https://doi.org/10.21508/1027-4065-2016-61-4-37-42

Полный текст:

Аннотация

Обструктивные нарушения дыхания во сне у детей представляют собой широкий спектр патологических состояний, из которых наиболее тяжелым является обструктивное апноэ сна. Приводятся данные о связи указанного нарушения с повышенным риском возникновения патологии сердечно-сосудистой системы в детском возрасте. Отмечается связь обструктивного апноэ сна с нарушением автономной регуляции, что проявляется гиперсимпатикотонией, определяемой по характеристикам ритма сердца, метаболическим показателям, уровню артериального давления. Выявляются нарушения электрической стабильности миокарда, что выражается в повышении дисперсии интервала Q — T на ЭКГ. Отмеченные изменения повышают риск нарушений ритма сердца. Обструктивное апноэ сна у детей сопровождается повышением тонуса сосудов и нарастанием артериального давления, изменениями структуры эндотелия, активацией системной воспалительной реакции, что способствует процессам атерогенеза. Указанные нарушения могут иметь стойкий характер при отсутствии своевременного лечения. Диагностика и коррекция обструктивного апноэ сна у детей является составным компонентом профилактики кардиоваскулярной патологии.

Об авторе

И. А. Кельмансон
Институт специальной педагогики и психологии Международного университета семьи и ребенка им. Рауля Валленберга, Санкт-Петербург
Россия

д.м.н., проф. кафедры клинической психологии Института специальной педагогики и психологии Международного университета семьи и ребенка им. Рауля Валленберга, Санкт-Петербург. 194356 Санкт-Петербург, ул. Большая Озерная, д. 92



Список литературы

1. Полуэктов М. Г. Синдром обструктивных апноэ во сне: современные представления и роль. Ожирение и метаболизм 2005; 1: 1–7. (Poluektov M. G. Obstructive sleep apnea syndrome: current understanding and role. Ozhirenie i metabolizm 2005; 1: 1–7.)

2. Кельмансон И. А. Сон и дыхание детей раннего возраста. СПб: Элби-СПб 2006; 392. (Kelmanson I. A. Sleep and breathing in young children.SPb.:Elbi-SPb 2006; 392.)

3. Somers V. K., White D. P., Amin R. et al. Sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing. J Am Coll Cardiol 2008; 52: 8: 686–717.

4. Marshall N. S., Wong K. K., Liu P. Y. et al. Sleep apnea as an independent risk factor for all- cause mortality: the Busselton Health Study. Sleep 2008; 31: 8: 1079–1085.

5. Doherty L. S., Kiely J. L., Swan V., McNicholas W. T. Longterm effects of nasal continuous positive airway pressure therapy on cardiovascular outcomes in sleep apnea syndrome. Chest 2005; 127: 6: 2076–2084.

6. Lumeng J. C., Chervin R. D. Epidemiology of pediatric obstructive sleep apnea. Proc Am Thorac Soc 2008; 5: 2: 242–252.

7. Verrier R. L., Harper R. M. Cardiovascular physiology: Central and autonomic regulation. Principles and practice of sleep medicine. Philadelphia, 2011; 215–225.

8. Lanfranchi P. A., Somers V. K. Cardiovascular physiology: Autonomic control in health and in sleep disorders. Principles and practice of sleep medicine. Philadelphia, 2011; 226–236.

9. Somers V. K., White D. P., Amin R. et al. Sleep apnea and cardiovascular disease. Circulation 2008; 118: 10: 1080–1111.

10. Imadojemu V. A., Mawji Z., Kunselman A. et al. Sympathetic chemoreflex responses in obstructive sleep apnea and effects of continuous positive airway pressure therapy. Chest 2007; 131: 5: 1406–1413.

11. Ziegler M. G., Mills P. J., Loredo J. S. et al. Effect of continuous positive airway pressure and placebo treatment on sympathetic nervous activity in patients with obstructive sleep pnea. Chest 2001; 120: 3: 887–893.

12. Imadojemu V. A., Gleeson K., Gray K. S. et al. Obstructive apnea during sleep is associated with peripheral vasoconstriction. Am J Respir Crit Care Med 2002; 165: 1: 61–66.

13. Kelmanson I. A. Signs of sympathetic dominance in sleep and wake based on spectral analysis of heart rate variability in children with obstructive sleep apnea. Somnologie 2014; 18: 3: 194–201.

14. Penzel T., Glos M., Schobel C. et al. Estimating sleep disordered breathing based on heart rate analysis. Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Osaka, 2013; 6571–6574.

15. Muzumdar H. V., Sin S., Nikova M. et al. Changes in heart rate variability after adenotonsillectomy in children with obstructive sleep apnea. Chest 2011; 139: 5: 1050–1059.

16. O'Brien L. M., Gozal D. Autonomic dysfunction in children with sleep-disordered breathing. Sleep 2005; 28: 6: 747–752.

17. Кожевникова О. В., Намазова-Баранова Л. С., Абашидзе Э. А. и др. Синдром обструктивного апноэ сна у детей как риск развития сердечно-сосудистой патологии. Вестник РАМН 2015; 1: 32–40. (Kozhevnikova O. V., Namazova- Baranova L. S., Abashidze E. A. et al. Obstructive sleep apnea syndrome in children as a risk of cardiovascular pathology development. Vestnik RAMN 2015; 1: 32–40.)

18. Snow A. B., Khalyfa A., Serpero L. D. et al. Catecholamine alterations in pediatric obstructive sleep apnea: effect of obesity. Pediatr Pulmonol 2009; 44: 6: 559–567.

19. Kaditis A. G., Alexopoulos E. I., Damani E. et al. Urine levels of catecholamines in Greek children with obstructive sleepdisordered breathing. Pediatr Pulmonol 2009; 44: 1: 38–45.

20. Gozal D., Jortani S., Snow A. B. et al. Two-dimensional differential in-gel electrophoresis proteomic approaches reveal urine candidate biomarkers in pediatric obstructive sleep apnea. Am J Respir Crit Care Med 2009; 180: 12: 1253–1261.

21. Barta K., Szabo Z., Kun C. et al. The effect of sleep apnea on QT interval, QT dispersion, and arrhythmias. Clin Cardiol 2010; 33: 6: E35–39.

22. Kelmanson I. A. Obstructive sleep apnea and increased QT dispersion. Somnologie 2015; 19: 3: 178–185.

23. Kirk V., Midgley J., Giuffre M. et al. Hypertension and obstructive sleep apnea in Caucasian children. World J Cardiol 2010; 2: 8: 251–256.

24. Horne R. S., Yang J. S., Walter L. M. et al. Elevated blood pressure during sleep and wake in children with sleep-disordered breathing. Pediatrics 2011; 128: 1: e85–92.

25. Amin R., Somers V. K., McConnell K. et al. Activity-adjusted 24‑hour ambulatory blood pressure and cardiac remodeling in children with sleep disordered breathing. Hypertension 2008; 51: 1: 84–91.

26. Ng D. K., Wong J. C., Chan C. H. et al. Ambulatory blood pressure before and after adenotonsillectomy in children with obstructive sleep apnea. Sleep Med 2010; 11: 7: 721– 725.

27. Soukhova-O'Hare G. K., Cheng Z. J., Roberts A. M., Gozal D. Postnatal intermittent hypoxia alters baroreflex function in adult rats. Am J Physiol Heart Circ Physiol 2006; 290: 3: H1157–1164.

28. Reeves S. R., Guo S. Z., Brittian K. R. et al. Anatomical changes in selected cardio- respiratory brainstem nuclei following early post-natal chronic intermittent hypoxia. Neurosci Lett 2006; 402: 3: 233–237.

29. Hui A. S., Striet J. B., Gudelsky G. et al. Regulation of catecholamines by sustained and intermittent hypoxia in neuroendocrine cells and sympathetic neurons. Hypertension 2003; 42: 6: 1130–1136.

30. Prabhakar N. R., Dick T. E., Nanduri J., Kumar G. K. Systemic, cellular and molecular analysis of chemoreflex-mediated sympathoexcitation by chronic intermittent hypoxia. Exp Physiol 2007; 92: 1: 39–44.

31. Fletcher E. C., Bao G., Li R. Renin activity and blood pressure in response to chronic episodic hypoxia. Hypertension 1999; 34: 2: 309–314.

32. Sica A. L., Greenberg H. E., Scharf S. M., Ruggiero D. A. Chronic-intermittent hypoxia induces immediate early gene expression in the midline thalamus and epithalamus. Brain Res 2000; 883: 2: 224–228.

33. Drager L. F., Bortolotto L. A., Figueiredo A. C. et al. Obstructive sleep apnea, hypertension, and their interaction on arterial stiffness and heart remodeling. Chest 2007; 131: 5: 1379– 1386.

34. Alchanatis M., Tourkohoriti G., Kosmas E. N. et al. Evidence for left ventricular dysfunction in patients with obstructive sleep apnoea syndrome. Eur Respir J 2002; 20: 5: 1239–1245.

35. Amin R. S., Kimball T. R., Kalra M. et al. Left ventricular function in children with sleep- disordered breathing. Am J Cardiol 2005; 95: 6: 801–804.

36. Amin R. S., Kimball T. R., Bean J. A. et al. Left ventricular hypertrophy and abnormal ventricular geometry in children and adolescents with obstructive sleep apnea. Am J Respir Crit Care Med 2002; 165: 10: 1395–1399.

37. Amra B., Golshan M., Fietze I. et al. Correlation between chronic obstructive pulmonary disease and obstructive sleep apnea syndrome in a general population in Iran. J Res Med Sci 2011; 16: 7: 885–889.

38. Tavil Y., Kanbay A., Sen N. et al. Comparison of right ventricular functions by tissue Doppler imaging in patients with obstructive sleep apnea syndrome with or without hypertension. Int J Cardiovasc Imaging 2007; 23: 4: 469–477.

39. Arias M. A., Garcia-Rio F., Alonso-Fernandez A. et al. Pulmonary hypertension in obstructive sleep apnoea: effects of continuous positive airway pressure: a randomized, controlled cross-over study. Eur Heart J 2006; 27: 9: 1106–1113.

40. Sofer S., Weinhouse E., Tal A. et al. Cor pulmonale due to adenoidal or tonsillar hypertrophy or both in children. Noninvasive diagnosis and follow-up. Chest 1988; 93: 1: 119–122.

41. Tang J. R., Le Cras T. D., Morris K. G., Abman S. H. Brief perinatal hypoxia increases severity of pulmonary hypertension after reexposure to hypoxia in infant rats. Am J Physiol Lung Cell Mol Physiol 2000; 278: 2: L356–364.

42. Gozal D., Kheirandish-Gozal L. Cardiovascular morbidity in obstructive sleep apnea: oxidative stress, inflammation, and much more. Am J Respir Crit Care Med 2008; 177: 4: 369–375.

43. Dyugovskaya L., Lavie P., Hirsh M., Lavie L. Activated CD8+T-lymphocytes in obstructive sleep apnoea. Eur Respir J 2005; 25: 5: 820–828.

44. Ryan S., Taylor C. T., McNicholas W. T. Predictors of elevated nuclear factor-kappaB- dependent genes in obstructive sleep apnea syndrome. Am J Respir Crit Care Med 2006; 174: 7: 824–830.

45. Kataoka T., Enomoto F., Kim R. et al. The effect of surgical treatment of obstructive sleep apnea syndrome on the plasma TNF-alpha levels. Tohoku J Exp Med 2004; 204: 4: 267–272.

46. Gozal D., Serpero L. D., Kheirandish-Gozal L. et al. Sleep measures and morning plasma TNF-alpha levels in children with sleep-disordered breathing. Sleep 2010; 33: 3: 319–325.

47. Ridker P. M., Rifai N., Rose L. et al. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002; 347: 20: 1557–1565.

48. Punjabi N. M., Beamer B. A. C-reactive protein is associated with sleep disordered breathing independent of adiposity. Sleep 2007; 30: 1: 29–34.

49. Larkin E. K., Rosen C. L., Kirchner H. L. et al. Variation of Creactive protein levels in adolescents: association with sleepdisordered breathing and sleep duration. Circulation 2005; 111: 15: 1978–1984.

50. Li A. M., Chan M. H., Yin J. et al. C-reactive protein in children with obstructive sleep apnea and the effects of treatment. Pediatr Pulmonol 2008; 43: 1: 34–40.

51. Khalyfa A., Bhushan B., Hegazi M. et al. Fatty-acid binding protein 4 gene variants and childhood obesity: potential implications for insulin sensitivity and CRP levels. Lipids Health Dis 2010; 9: 18: 1–6.

52. Gozal D., Crabtree V. M., Sans Capdevila O. et al. C-reactive protein, obstructive sleep apnea, and cognitive dysfunction in school-aged children. Am J Respir Crit Care Med 2007; 176: 2: 188–193.

53. Кельмансон И. А. Эмоциональные расстройства и расстройства поведения у детей, связанные с нарушениями сна. Рос вестн перинатол и педиатр 2014; 59: 4: 32–40. (Kelmanson I. A. Emotional disturbances and behavioural deviations in children related to sleep disturbances. Rossiyskiy vestnik perinatologii i pediatrii 2014; 59: 4: 32–40.)

54. Kaditis A. G., Alexopoulos E. I., Kalampouka E. et al. Nocturnal change of circulating intercellular adhesion molecule 1 levels in children with snoring. Sleep Breath 2007; 11: 4: 267–274.

55. Gozal D., Capdevila O. S., Kheirandish-Gozal L. Metabolic alterations and systemic inflammation in obstructive sleep apnea among nonobese and obese prepubertal children. Am J Respir Crit Care Med 2008; 177: 10: 1142–1149.

56. Kim J., Bhattacharjee R., Snow A. B. et al. Myeloid-related protein 8/14 levels in children with obstructive sleep apnoea. Eur Respir J 2010; 35: 4: 843–850.

57. Kaditis A. G., Alexopoulos E. I., Kalampouka E. et al. Morning levels of fibrinogen in children with sleep-disordered breathing. Eur Respir J 2004; 24: 5: 790–797.

58. Kheirandish-Gozal L., Bhattacharjee R., Gozal D. Autonomic alterations and endothelial dysfunction in pediatric obstructive sleep apnea. Sleep Med 2010; 11: 7: 714–720.

59. Gozal D., Kheirandish-Gozal L., Serpero L. D. et al. Obstructive sleep apnea and endothelial function in school-aged nonobese children: effect of adenotonsillectomy. Circulation 2007; 116: 20: 2307–2314.

60. Bhattacharjee R., Kim J., Alotaibi W. H. et al. Endothelial dysfunction in children without hypertension: potential contributions of obesity and obstructive sleep apnea. Chest 2012; 141: 3: 682–691.


Для цитирования:


Кельмансон И.А. Обструктивное апноэ во время сна и риск кардиоваскулярной патологии у детей. Российский вестник перинатологии и педиатрии. 2016;61(4):37-42. https://doi.org/10.21508/1027-4065-2016-61-4-37-42

For citation:


Kelmanson I.A. Obstructive sleep apnea and cardiovascular risk in children. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2016;61(4):37-42. (In Russ.) https://doi.org/10.21508/1027-4065-2016-61-4-37-42

Просмотров: 366


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)