Соки в питании ребенка и взрослого человека: значение для здоровья
https://doi.org/10.21508/1027-4065-2016-61-4-43-48
Аннотация
Соки имеют большое значение в системе рационального питания человека с первых лет его жизни. В соответствии с общепринятыми рекомендациями их вводят в питание ребенка не ранее 4‑месячного возраста, обычно после первых продуктов прикорма. Соки обеспечивают организм ребенка необходимыми макро- и микронутриентами, способствуют адаптации ребенка к новому характеру питания, играют важную роль в формировании вкусовых предпочтений и пищевом программировании. Соки являются источником витаминов (в первую очередь витамина C), некоторых минералов (железо), пищевых волокон, воды. В то же время соки содержат значительное число других важных для организма человека органических компонентах, например полифенолов, которые являются важным компонентом продуктов растительного происхождения. Они содержатся в овощах и фруктах как свежих, так и в виде напитков. К полифенолам относятся феноловая кислота, а также флавоноиды: флавонолы (катехины и проантоцианидины), антоцианины и др. Фруктовые соки в своем составе в среднем содержат 34 мг/100 мл полифенолов, а томатный сок — 69 мг/100 мл. Полифенолы играют важнейшую роль в механизмах антиоксидантной защиты организма. В долговременном аспекте показаны их антиатерогенный эффект (снижение риска инфаркта миокарда) и антиканцерогенные эффекты (снижение риска рака легких, прямой кишки).
Ключевые слова
Об авторе
С. В. БельмерРоссия
д.м.н., проф. кафедры госпитальной педиатрии № 2 РНИМУ им. Н.И. Пирогова 117513 Москва, Ленинский пр-т, д. 117
Список литературы
1. Национальная программа оптимизации вскармливания детей первого года жизни в Российской Федерации. Под ред. А. А. Баранова, В. А. Тутельяна. М., 2011; 68. (The national program of feeding optimization of children of the first year of life in the Russian Federation. А. А. Baranov, V. А. Tutel’yan (eds). Moscow, 2011; 68.)
2. Frei B., Higdon J. V. Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J Nutr 2003; 133: 10: 3275S–3284S.
3. Koutsos A., Tuohy K. M., Lovegrove J. A. Apples and cardiovascular health — is the gut microbiota a core consideration? Nutrients 2015; 7: 3959–3998.
4. Ozdal T., Sela D. A., Xiao J. et al. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 2016; 8: 78–114.
5. Blaut M., Schoefer L., Braune A. Transformation of flavonoids by intestinal microorganisms. Int J Vitam Nutr Res 2003; 73: 2: 79–87.
6. Souci S. W., Fachmann W., Kraut H., revised by Kirchhoff E. Food composition and nutrition tables, based on the 6th edition. Stuttgart: Medpharm GmbH Scientific Publishers, 2005; 226.
7. Kahle K., Kraus M., Richling E. Polyphenol profiles of apple juices. Mol Nutr Food Res 2005; 49: 797–806
8. Vrhovsek U., Rigo A., Tonon D., Mattivi F. Quantitation of polyphenols in different apple varieties. J Agric Food Chem 2004; 52: 6532–6538.
9. Gerhauser C. Cancer Chemopreventive Potential of Apples, Apple Juice, and Apple Components. Planta Med 2008; 74: 1608–1624.
10. Wojdylo A., Oszmianski J., Laskowski P. Polyphenolic compounds and antioxidant activity of new and old apple varieties. J Agric Food Chem 2008; 56: 6: 520–530.
11. Hyson D. A. A Comprehensive Review of Apples and Apple Components and Their Relationship to Human Health. Adv Nutr 2011; 2: 408–420.
12. Sun J., Chu Y., Wu X., Liu R. H. Antioxidant and antiproliferative activities of common fruits. J Agric Food Chem 2002; 50: 7449–7454.
13. Lee K., Kim Y., Kim D. et al. Major phenolics in apple and their contribution to the total antioxidant capacity. J Agric Food Chem 2003; 51: 6516–6520.
14. Escarpa A., Gonzalez M. High-performance liquid chromatography with diode-array detection for the performance of phenolic compounds in peel and pulp from different apple varieties. J Chromat 1998; 823: 331–337.
15. Boyer J., Liu R. H. Apple phytochemicals and their health benefits. Nutrition J 2004; 3: 5–20.
16. Arts I. C. W., Hollman P. C. H. Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr 2005; 81: Suppl: 317S–325S.
17. Osada K., Suzuki T., Kawakami Y. et al. Dose-dependent hypocholesterolemic actions of dietary apple polyphenol in rats fed cholesterol. Lipids 2006; 41: 133–139.
18. Osada K., Funayama M., Fuchi S. et al. Effects of dietary procyanidins and tea polyphenols on adipose tissue mass and fatty acid metabolism in rats on a high fat diet. J Oleo Sci 2006; 55: 79–89.
19. Murase T., Nagasawa A., Suzuki J. et al. Beneficial effects of tea catechins on diet- induced obesity: Stimulation of lipid catabolism in the liver. Int J Obes 2002; 26: 1459–1464.
20. Ohta Y., Sami M., Kanda T. et al. Gene expression analysis of the anti-obesity effect by apple polyphenols in rats fed a high fat diet or a normal diet. J Oleo Sci 2006; 55: 305–314.
21. Vidal R., Hernandez-Vallejo S., Pauquai T. et al. Apple procyanidins decrease cholesterol esterification and lipoprotein secretion in Caco-2/TC7 enterocytes. J Lipid Res 2005; 46: 258–268.
22. Ikeda I., Imasato Y., Sasaki E. et al. Tea catechins decrease micellar solubility and intestinal-absorption of cholesterol in rats. Biochim Biophys Acta 1992; 1127: 141–146.
23. Lam C. K., Zhang Z. S., Yu H. J. et al. Apple polyphenols inhibit plasma CETP activity and reduce the ratio of non-HDL to HDL cholesterol. Mol Nutr Food Res 2008; 52: 950–958.
24. Garcia-Diez F., Garcia-Mediavilla V., Bayon J. E., Gonzalez-Gallego J. Pectin feeding influences fecal bile acid excretion, hepatic bile acid and cholesterol synthesis and serum cholesterol in rats. J Nutr 1996; 126: 1766–1771.
25. Gonzalez M., Rivas C., Caride B. et al. Effects of orange and apple pectin on cholesterol concentration in serum, liver and faeces. J Physiol Biochem 1998; 54: 99–104.
26. Hanhineva K., Törrönen R., Bondia-Pons I. et al. Impact of Dietary Polyp henols on Carbohydrate Metabolism. Int J Mol Sci 2010; 11: 1365–1402.
27. Cermak R., Landgraf S., Wolffram S. Quercetinglucosides inhibit glucose uptake into brushborder-membrane vesicles of porcine jejunum. Br J Nutr 2004; 91: 849–855.
28. Kobayashi Y., Suzuki M., Satsu H. et al. Green tea polyphenols inhibit the sodium- dependent glucose transporter of intestinal epithelial cells by a competitive mechanism. J Agric Food Chem 2000; 48: 5618–5623.
29. Shimizu M., Kobayashi Y., Suzuki M. et al. Regulation of intestinal glucose transport by tea catechins. Biofactors 2000; 13: 61–65.
30. Johnston K., Sharp P., Clifford M., Morgan L. Dietary polyphenols decrease glucose uptake by human intestinal Caco-2 cells. FEBS Lett 2005; 579: 1653–1657.
31. Li J. M., Che C. T., Lau C. B. et al. Inhibition of intestinal and renal Na+-glucose cotransporter by naringenin. Int J Biochem Cell Biol 2006; 38: 985–995.
32. Song J., Kwon O., Chen S. et al. Flavonoid inhibition of sodium-dependent vitamin C transporter 1 (SVCT1) and glucose transporter isoform 2 (GLUT2), intestinal transporters for vitamin C and Glucose. J Biol Chem 2002; 277: 15252–15260.
33. Davalos A., Fernandez-Hernando C., Cerrato F. et al. Red Grape Juice Polyphenols Alter Cholesterol Homeostasis and Increase. LDL-Receptor Activity in Human Cells In Vitro. J Nutr 2006; 136: 1766–1773.
34. Basu A. Berries: emerging impact on cardiovascular health. Nutr Rev 2010; 68: 3: 168–177.
35. Percival S. S., Bukowski J. F., Milner J. Bioactive food components that enhance gammadelta T cell function may play a role in cancer prevention. J Nutr 2008; 138: 1: 1–4.
36. Percival S. S. Grape Consumption Supports Immunity in Animals and Humans. J Nutr 2009; 139: 1801S–1805S.
37. Shankar S., Singh G., Srivastava R. K. Chemoprevention by resveratrol: molecular mechanisms and therapeutic potential. Frontiers in Bioscience (Journal and Virtual Library) 2007; 12: 12: 4839–4854.
38. Gatz S. A., Wiesmuller L. Take a break — resveratrol in action on DNA. Carcinogenesis 2008; 29: 2: 321–332.
39. Yoo M. A., Chung H. K., Kang M. H. Evaluation of physicochemical properties in different cultivar grape seed waste. Food Sci Biotechnol 2004; 13: 26–29.
40. Joseph J. A., Shukitt-Hale B., Willis L. M. Grape Juice, Berries, and Walnuts Affect Brain Aging and Behavior. J Nutr 2009; 139: 1813S–1817S.
41. Siddiq M. Plums and prunes. Handbook of Fruits and Fruit Processing. Y. H. Hui (ed.). Blackwell Publishing Professional, Iowa City, Iowa, USA, 2006; 553–564.
42. Bouayed J., Rammal H., Dicko A. et al. Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolytic and antioxidant effects. J Neurol Sc 2007; 262: 1–2: 77–84.
43. Bouayed J., Rammal H., Soulimani R. Oxidative stress and anxiety, relationship and cellular pathways. Oxidative Med Cellular Longevity 2009; 2: 63–67.
44. Dongowski G., Lorenz A. Unsaturated oligogalacturonic acids are generated by in vitro treatment of pectin with human faecal flora. Carbohydr Res 1998; 314: 237–244.
45. Dongowski G., Lorenz A., Proll A. The degree of methylation influences the degradation of pectin in the intestinal tract of rats and in vitro. J Nutr 2002; 132: 1935–1944.
46. Gulfi M., Arrigoni E., Amado R. The chemical characteristics of apple pectin influence its fermentability in vitro. Lwt Food Sci Tech 2006; 39: 1001–1004.
47. Brouns F., Theuwissen E., Adam A. et al. Cholesterol-lowering properties of different pectin types in mildly hyper-cholesterolemic men and women. Eur J Clin Nutr 2012; 66: 591– 599.
48. Spiller G. A., Chernoff M. C., Hill R. A. et al. Effect of purified cellulose, pectin, and a low- residue diet on fecal volatile fattyacids, transit-time, and fecal weight in humans. Am J Clin Nutr 1980; 33: 754–759.
49. Schwartz S. E., Levine R. A., Singh A. et al. Sustained pectin ingestion delays gastric- emptying. Gastroenterol 1982; 83: 812–817.
50. Tamura M., Nakagawa H., Tsushida T. et al. Effect of pectin enhancement on plasma quercetin and fecal flora in rutinsupplemented mice. J Food Sci 2007; 72: S648–S651.
51. Nishijima T., Iwai K., Saito Y. et al. Chronic ingestion of apple pectin can enhance the absorption of quercetin. J Agric Food Chem 2009; 57: 2583–2587.
52. Titgemeyer E. C., Bourquin L. D., Fahey G. C., Garleb K. A. Fermentability of various fiber sources by human fecal bacteria invitro. Am J Clin Nutr 1991; 53: 1418–1424.
53. Barry J. L., Hoebler C., Macfarlane G. T. et al. Estimation of the fermentability of dietary fiber in-vitro — a european interlaboratory study. Br J Nutr 1995; 74: 303–322.
54. Bourquin L. D., Titgemeyer E. C., Fahey G. C. Fermentation of various dietary fiber sources by human fecal bacteria. Nutr Res 1996; 16: 1119–1131.
55. Конь И. Я., Гмошинская М. В., Георгиева О. В. и др. Использование соков прямого отжима в питании детей первого года жизни. Рос вестн перинатол и педиатр 2015; 4: 125–130. (Kon’ I. Ya., Gmoshinskaya M. V., Georgieva O. V. et al.Use of juice of a direct extraction in food of children of the first year of life. Ros vestn perinatol i pediatr 2015; 4: 125–130.)
56. Ferguson L. R. Antimutagens as cancer chemopreventive agents in the diet. Mutat Res 1994; 307: 395–410.
57. Hensel A., Meier K. Pectins and xyloglucans exhibit antimutagenic activities against nitroaromatic compounds. Planta Med 1999; 65: 395–399.
58. Ferguson L. R., Zhu S., Kestell P. Contrasting effects of nonstarch polysaccharide and resistant starch-based diets on the disposition and excretion of the food carcinogen, 2‑amino-3‑methylimidazo [4,5‑f] quinoline (IQ), in a rat model. Food Chem Toxicol 2003; 41: 785–792.
59. Kestell P., Zhu S., Ferguson L. R. Mechanisms by which resistant starches and non-starch polysaccharide sources affect the metabolism and disposition of the food carcinogen, 2‑amino-3‑methylimidazo [4,5‑f] quinoline. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 802: 201–210.
60. Pohl C., Will F., Dietrich H., Schrenk D. Cytochrome P450 1A1 expression and activity in Caco-2 cells: modulation by apple juice extract and certain apple polyphenols. J Agric Food Chem 2006; 54: 10262–10268.
61. Gerhauser C., Klimo K., Heiss E. et al. Mechanism-basedin vitroscreening of potential cancer chemopreventive agents. Mutat Res 2003; 523–524: 163–172.
62. Zessner H., Pan L., Will F. et al. Fractionation of polyphenolenriched apple juice extracts to identify constituents with cancer chemopreventive potential. Mol Nutr Food Res 2008; 52: 1: S28–44.
63. Feskanich D., Ziegler R. G., Michaud D. S. et al. Prospective study of fruit and vegetable consumption and risk of lung cancer among men and women. J Natl Cancer Inst 2000; 92: 1812–1823.
64. Michels K. B., Giovannucci E., Chan A. T. et al. Fruit and vegetable consumption and colorectal adenomas in the Nurses' Health Study. Cancer Res 2006; 66: 3942–3953.
65. Deneo-Pellegrini H., De Stefani E., Ronco A. Vegetables, fruits, and risk of colorectal cancer: a case-control study from Uruguay. Nutr Cancer 1996; 25: 297–304.
66. Lee S. Y., Choi K. Y., Kim M. K. et al. The relationship between intake of vegetables and fruits and colorectal adenoma-carcinoma sequence. Korean J Gastroenterol 2005; 45: 23– 33.
67. Gallus S., Talamini R., Giacosa A. et al. Does an apple a day keep the oncologist away? Ann Oncol 2005; 16: 1841–1844.
68. Cook J. D., Monsen E. R. Vitamin C, the common cold, and iron absorption. Amer J Clin Nutrit 1977; 30: 235–241.
Рецензия
Для цитирования:
Бельмер С.В. Соки в питании ребенка и взрослого человека: значение для здоровья. Российский вестник перинатологии и педиатрии. 2016;61(4):43-48. https://doi.org/10.21508/1027-4065-2016-61-4-43-48
For citation:
Belmer S.V. Juices in the diet of a child and an adult: Their significance for health. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2016;61(4):43-48. (In Russ.) https://doi.org/10.21508/1027-4065-2016-61-4-43-48