Preview

Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics)

Advanced search

Juices in the diet of a child and an adult: Their significance for health

https://doi.org/10.21508/1027-4065-2016-61-4-43-48

Abstract

Juices are of great importance in human rational nutrition during the first years of life. In accordance with the generally accepted recommendations, they are introduced into the infant diet no earlier than 4 months of age, usually after the first complementary foods. Juices provide essential macro- and micronutrients for the infant, promote his/her adaptation to a new eating pattern, and play an important role in the formation of taste preferences and food programming. Juices are a source of vitamins (primarily vitamin C), some minerals (iron), fibers, and water. At the same time, juices contain significant amount of other organic compounds important for the human body, such as polyphenols that are an important component of plant products. They are present in vegetables and fruits, both fresh foods and drinks. Polyphenols include phenolic acid and flavonoids: flavonols (catechins and proanthocyanidines), anthocyanins, etc. Fruit juices contain an average of 34 mg/ 100 ml polyphenols and tomato juice does 69 mg/100 ml. Polyphenols play the most important role in the body’s antioxidant defense mechanisms. Their anti-atherogenic and anti-cancer effects (reducing the risk of myocardial infarction and that of lung and rectal cancers) are shown in the long term.

About the Author

S. V. Belmer
N.I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow
Russian Federation


References

1. Национальная программа оптимизации вскармливания детей первого года жизни в Российской Федерации. Под ред. А. А. Баранова, В. А. Тутельяна. М., 2011; 68. (The national program of feeding optimization of children of the first year of life in the Russian Federation. А. А. Baranov, V. А. Tutel’yan (eds). Moscow, 2011; 68.)

2. Frei B., Higdon J. V. Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J Nutr 2003; 133: 10: 3275S–3284S.

3. Koutsos A., Tuohy K. M., Lovegrove J. A. Apples and cardiovascular health — is the gut microbiota a core consideration? Nutrients 2015; 7: 3959–3998.

4. Ozdal T., Sela D. A., Xiao J. et al. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 2016; 8: 78–114.

5. Blaut M., Schoefer L., Braune A. Transformation of flavonoids by intestinal microorganisms. Int J Vitam Nutr Res 2003; 73: 2: 79–87.

6. Souci S. W., Fachmann W., Kraut H., revised by Kirchhoff E. Food composition and nutrition tables, based on the 6th edition. Stuttgart: Medpharm GmbH Scientific Publishers, 2005; 226.

7. Kahle K., Kraus M., Richling E. Polyphenol profiles of apple juices. Mol Nutr Food Res 2005; 49: 797–806

8. Vrhovsek U., Rigo A., Tonon D., Mattivi F. Quantitation of polyphenols in different apple varieties. J Agric Food Chem 2004; 52: 6532–6538.

9. Gerhauser C. Cancer Chemopreventive Potential of Apples, Apple Juice, and Apple Components. Planta Med 2008; 74: 1608–1624.

10. Wojdylo A., Oszmianski J., Laskowski P. Polyphenolic compounds and antioxidant activity of new and old apple varieties. J Agric Food Chem 2008; 56: 6: 520–530.

11. Hyson D. A. A Comprehensive Review of Apples and Apple Components and Their Relationship to Human Health. Adv Nutr 2011; 2: 408–420.

12. Sun J., Chu Y., Wu X., Liu R. H. Antioxidant and antiproliferative activities of common fruits. J Agric Food Chem 2002; 50: 7449–7454.

13. Lee K., Kim Y., Kim D. et al. Major phenolics in apple and their contribution to the total antioxidant capacity. J Agric Food Chem 2003; 51: 6516–6520.

14. Escarpa A., Gonzalez M. High-performance liquid chromatography with diode-array detection for the performance of phenolic compounds in peel and pulp from different apple varieties. J Chromat 1998; 823: 331–337.

15. Boyer J., Liu R. H. Apple phytochemicals and their health benefits. Nutrition J 2004; 3: 5–20.

16. Arts I. C. W., Hollman P. C. H. Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr 2005; 81: Suppl: 317S–325S.

17. Osada K., Suzuki T., Kawakami Y. et al. Dose-dependent hypocholesterolemic actions of dietary apple polyphenol in rats fed cholesterol. Lipids 2006; 41: 133–139.

18. Osada K., Funayama M., Fuchi S. et al. Effects of dietary procyanidins and tea polyphenols on adipose tissue mass and fatty acid metabolism in rats on a high fat diet. J Oleo Sci 2006; 55: 79–89.

19. Murase T., Nagasawa A., Suzuki J. et al. Beneficial effects of tea catechins on diet- induced obesity: Stimulation of lipid catabolism in the liver. Int J Obes 2002; 26: 1459–1464.

20. Ohta Y., Sami M., Kanda T. et al. Gene expression analysis of the anti-obesity effect by apple polyphenols in rats fed a high fat diet or a normal diet. J Oleo Sci 2006; 55: 305–314.

21. Vidal R., Hernandez-Vallejo S., Pauquai T. et al. Apple procyanidins decrease cholesterol esterification and lipoprotein secretion in Caco-2/TC7 enterocytes. J Lipid Res 2005; 46: 258–268.

22. Ikeda I., Imasato Y., Sasaki E. et al. Tea catechins decrease micellar solubility and intestinal-absorption of cholesterol in rats. Biochim Biophys Acta 1992; 1127: 141–146.

23. Lam C. K., Zhang Z. S., Yu H. J. et al. Apple polyphenols inhibit plasma CETP activity and reduce the ratio of non-HDL to HDL cholesterol. Mol Nutr Food Res 2008; 52: 950–958.

24. Garcia-Diez F., Garcia-Mediavilla V., Bayon J. E., Gonzalez-Gallego J. Pectin feeding influences fecal bile acid excretion, hepatic bile acid and cholesterol synthesis and serum cholesterol in rats. J Nutr 1996; 126: 1766–1771.

25. Gonzalez M., Rivas C., Caride B. et al. Effects of orange and apple pectin on cholesterol concentration in serum, liver and faeces. J Physiol Biochem 1998; 54: 99–104.

26. Hanhineva K., Törrönen R., Bondia-Pons I. et al. Impact of Dietary Polyp henols on Carbohydrate Metabolism. Int J Mol Sci 2010; 11: 1365–1402.

27. Cermak R., Landgraf S., Wolffram S. Quercetinglucosides inhibit glucose uptake into brushborder-membrane vesicles of porcine jejunum. Br J Nutr 2004; 91: 849–855.

28. Kobayashi Y., Suzuki M., Satsu H. et al. Green tea polyphenols inhibit the sodium- dependent glucose transporter of intestinal epithelial cells by a competitive mechanism. J Agric Food Chem 2000; 48: 5618–5623.

29. Shimizu M., Kobayashi Y., Suzuki M. et al. Regulation of intestinal glucose transport by tea catechins. Biofactors 2000; 13: 61–65.

30. Johnston K., Sharp P., Clifford M., Morgan L. Dietary polyphenols decrease glucose uptake by human intestinal Caco-2 cells. FEBS Lett 2005; 579: 1653–1657.

31. Li J. M., Che C. T., Lau C. B. et al. Inhibition of intestinal and renal Na+-glucose cotransporter by naringenin. Int J Biochem Cell Biol 2006; 38: 985–995.

32. Song J., Kwon O., Chen S. et al. Flavonoid inhibition of sodium-dependent vitamin C transporter 1 (SVCT1) and glucose transporter isoform 2 (GLUT2), intestinal transporters for vitamin C and Glucose. J Biol Chem 2002; 277: 15252–15260.

33. Davalos A., Fernandez-Hernando C., Cerrato F. et al. Red Grape Juice Polyphenols Alter Cholesterol Homeostasis and Increase. LDL-Receptor Activity in Human Cells In Vitro. J Nutr 2006; 136: 1766–1773.

34. Basu A. Berries: emerging impact on cardiovascular health. Nutr Rev 2010; 68: 3: 168–177.

35. Percival S. S., Bukowski J. F., Milner J. Bioactive food components that enhance gammadelta T cell function may play a role in cancer prevention. J Nutr 2008; 138: 1: 1–4.

36. Percival S. S. Grape Consumption Supports Immunity in Animals and Humans. J Nutr 2009; 139: 1801S–1805S.

37. Shankar S., Singh G., Srivastava R. K. Chemoprevention by resveratrol: molecular mechanisms and therapeutic potential. Frontiers in Bioscience (Journal and Virtual Library) 2007; 12: 12: 4839–4854.

38. Gatz S. A., Wiesmuller L. Take a break — resveratrol in action on DNA. Carcinogenesis 2008; 29: 2: 321–332.

39. Yoo M. A., Chung H. K., Kang M. H. Evaluation of physicochemical properties in different cultivar grape seed waste. Food Sci Biotechnol 2004; 13: 26–29.

40. Joseph J. A., Shukitt-Hale B., Willis L. M. Grape Juice, Berries, and Walnuts Affect Brain Aging and Behavior. J Nutr 2009; 139: 1813S–1817S.

41. Siddiq M. Plums and prunes. Handbook of Fruits and Fruit Processing. Y. H. Hui (ed.). Blackwell Publishing Professional, Iowa City, Iowa, USA, 2006; 553–564.

42. Bouayed J., Rammal H., Dicko A. et al. Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolytic and antioxidant effects. J Neurol Sc 2007; 262: 1–2: 77–84.

43. Bouayed J., Rammal H., Soulimani R. Oxidative stress and anxiety, relationship and cellular pathways. Oxidative Med Cellular Longevity 2009; 2: 63–67.

44. Dongowski G., Lorenz A. Unsaturated oligogalacturonic acids are generated by in vitro treatment of pectin with human faecal flora. Carbohydr Res 1998; 314: 237–244.

45. Dongowski G., Lorenz A., Proll A. The degree of methylation influences the degradation of pectin in the intestinal tract of rats and in vitro. J Nutr 2002; 132: 1935–1944.

46. Gulfi M., Arrigoni E., Amado R. The chemical characteristics of apple pectin influence its fermentability in vitro. Lwt Food Sci Tech 2006; 39: 1001–1004.

47. Brouns F., Theuwissen E., Adam A. et al. Cholesterol-lowering properties of different pectin types in mildly hyper-cholesterolemic men and women. Eur J Clin Nutr 2012; 66: 591– 599.

48. Spiller G. A., Chernoff M. C., Hill R. A. et al. Effect of purified cellulose, pectin, and a low- residue diet on fecal volatile fattyacids, transit-time, and fecal weight in humans. Am J Clin Nutr 1980; 33: 754–759.

49. Schwartz S. E., Levine R. A., Singh A. et al. Sustained pectin ingestion delays gastric- emptying. Gastroenterol 1982; 83: 812–817.

50. Tamura M., Nakagawa H., Tsushida T. et al. Effect of pectin enhancement on plasma quercetin and fecal flora in rutinsupplemented mice. J Food Sci 2007; 72: S648–S651.

51. Nishijima T., Iwai K., Saito Y. et al. Chronic ingestion of apple pectin can enhance the absorption of quercetin. J Agric Food Chem 2009; 57: 2583–2587.

52. Titgemeyer E. C., Bourquin L. D., Fahey G. C., Garleb K. A. Fermentability of various fiber sources by human fecal bacteria invitro. Am J Clin Nutr 1991; 53: 1418–1424.

53. Barry J. L., Hoebler C., Macfarlane G. T. et al. Estimation of the fermentability of dietary fiber in-vitro — a european interlaboratory study. Br J Nutr 1995; 74: 303–322.

54. Bourquin L. D., Titgemeyer E. C., Fahey G. C. Fermentation of various dietary fiber sources by human fecal bacteria. Nutr Res 1996; 16: 1119–1131.

55. Конь И. Я., Гмошинская М. В., Георгиева О. В. и др. Использование соков прямого отжима в питании детей первого года жизни. Рос вестн перинатол и педиатр 2015; 4: 125–130. (Kon’ I. Ya., Gmoshinskaya M. V., Georgieva O. V. et al.Use of juice of a direct extraction in food of children of the first year of life. Ros vestn perinatol i pediatr 2015; 4: 125–130.)

56. Ferguson L. R. Antimutagens as cancer chemopreventive agents in the diet. Mutat Res 1994; 307: 395–410.

57. Hensel A., Meier K. Pectins and xyloglucans exhibit antimutagenic activities against nitroaromatic compounds. Planta Med 1999; 65: 395–399.

58. Ferguson L. R., Zhu S., Kestell P. Contrasting effects of nonstarch polysaccharide and resistant starch-based diets on the disposition and excretion of the food carcinogen, 2‑amino-3‑methylimidazo [4,5‑f] quinoline (IQ), in a rat model. Food Chem Toxicol 2003; 41: 785–792.

59. Kestell P., Zhu S., Ferguson L. R. Mechanisms by which resistant starches and non-starch polysaccharide sources affect the metabolism and disposition of the food carcinogen, 2‑amino-3‑methylimidazo [4,5‑f] quinoline. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 802: 201–210.

60. Pohl C., Will F., Dietrich H., Schrenk D. Cytochrome P450 1A1 expression and activity in Caco-2 cells: modulation by apple juice extract and certain apple polyphenols. J Agric Food Chem 2006; 54: 10262–10268.

61. Gerhauser C., Klimo K., Heiss E. et al. Mechanism-basedin vitroscreening of potential cancer chemopreventive agents. Mutat Res 2003; 523–524: 163–172.

62. Zessner H., Pan L., Will F. et al. Fractionation of polyphenolenriched apple juice extracts to identify constituents with cancer chemopreventive potential. Mol Nutr Food Res 2008; 52: 1: S28–44.

63. Feskanich D., Ziegler R. G., Michaud D. S. et al. Prospective study of fruit and vegetable consumption and risk of lung cancer among men and women. J Natl Cancer Inst 2000; 92: 1812–1823.

64. Michels K. B., Giovannucci E., Chan A. T. et al. Fruit and vegetable consumption and colorectal adenomas in the Nurses' Health Study. Cancer Res 2006; 66: 3942–3953.

65. Deneo-Pellegrini H., De Stefani E., Ronco A. Vegetables, fruits, and risk of colorectal cancer: a case-control study from Uruguay. Nutr Cancer 1996; 25: 297–304.

66. Lee S. Y., Choi K. Y., Kim M. K. et al. The relationship between intake of vegetables and fruits and colorectal adenoma-carcinoma sequence. Korean J Gastroenterol 2005; 45: 23– 33.

67. Gallus S., Talamini R., Giacosa A. et al. Does an apple a day keep the oncologist away? Ann Oncol 2005; 16: 1841–1844.

68. Cook J. D., Monsen E. R. Vitamin C, the common cold, and iron absorption. Amer J Clin Nutrit 1977; 30: 235–241.


Review

For citations:


Belmer S.V. Juices in the diet of a child and an adult: Their significance for health. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2016;61(4):43-48. (In Russ.) https://doi.org/10.21508/1027-4065-2016-61-4-43-48

Views: 1017


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)