Pathogenetic mechanisms of idiopathic minimal-change nephrotic syndrome
Abstract
The paper presents the data available in the literature on the pathogenetic mechanisms of minimal-change nephrotic syndrome and also describes its clinical and histological signs, course, and treatment principles.
About the Author
V. A. ObukhovaRussian Federation
References
1. Lombel R.M., Gipson D.S, Hodson E.M. Treatment of steroidsensitive nephrotic syndrome: new guidelines from KDIGO. Pediat Nephrol 2013, 28: 415—426.
2. Ponticelli C., Glassock R.J. Treatment of primary glomerulonephritis. Oxford University press 2009: 179—213.
3. Andersen R.F., Thrane N., Noergaard K. et al. Early age at debut is a predictor of steroid-dependent and frequent relapsing nephrotic syndrome. Pediat Nephrol 2010; 25: 1299—1304.
4. Niaudet P., Boyer O. Idiopathic Nephrotic Syndrome in Children: Clinical aspects. Pediat Nephrol 2009: 667—702.
5. McKinney P.A., Feltbower R.G., Brocklebank J.T., Fitzpatrick M.M. Time trends and ethnic patterns of childhood nephrotic syndrome in Yorkshire, UK. Pediat Nephrol 2001; 16: 1040—1044.
6. Primary nephrotic syndrome in children: clinical significance of histopathologic variants of minimal change and of diffuse mesangial hypercellularity. A Report of the International Study of Kidney Disease in Children. Kidney Int 1981; 20: 765—771.
7. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerulonephritis Work Groop (2012) KDIGO Clinical Practice Guidelines for Glomerulonephritis. Kidney Int 2012; 2: Suppl: 163—171.
8. Shalhoub R.J. Pathogenesis of lipoid nephrosis: a disorder of T-cell function. Lancet 1974; 7: 556—560.
9. Koyama A., Fujisaki M., Kobayashi M. et al. A glomerular permeability factor produced by human T cell hybridomas. Kidney Int 2001; 40: 453—460.
10. Garin E.H., West L., Zheng W. Interleukin-8 alters glomerular heparan sulfate glycosaminoglycan chain size and charge in rats. Pediat Nephrol 2000; 14: 284—287.
11. Fouqueray B., Suberville S., Isaka Y. et al. Reduction of proteinuria in anti-glomerular basement membrane nephritis by interleukin-10 gene transfer. J Am Soc Nephrol 1996; 7: 9: 2259.
12. Araya C., Diaz L., Wasserfall C. et al. T regulatory cell function in idiopathic minimal lesion nephrotic syndrome. Pediat Nephrol 2009; 24: 1691—1698.
13. Cheung W., Wei C.L., Seah C.C. et al. Atopy, serum IgE, and interleukin-13 in steroidresponsive nephrotic syndrome. Pediat Nephrol 2004; 19: 627—632.
14. Lai K.W., Wei C.L., Tan L.K. et al. Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats. J Am Soc Nephrol 2007; 18: 5: 1476—1485.
15. Jabara H.H., Ahern D.J., Vercelli D., Geha R.S. Hydrocortisone and IL-4 induce IgE isotype switchingin human B cells. J Immunol 1991; 147: 1557—1560.
16. Kimata H., Lindley I., Furusho K. Effect of hydrocortisone on spontaneous IgE and IgG4 production in atopic patients. J Immunol 1995; 154: 3557—3566.
17. Fuke Y., Endo M., Ohsawa I. et al. Implication of elevated serum IgE levels in minimal change nephrotic syndrome. Nephron 2002; 91: 769—770.
18. Lama G., Luongo I., Tirino G. et al. T-lymphocyte populations and cytokines in childhood nephrotic syndrome. Am J Kidney Dis 2002; 39: 958—965.
19. Bustos C., Gonzalez E., Muley R. et al. Increase of tumour necrosis factor alpha synthesis and gene expression in peripheral blood mononuclear cells of children with idiopathic nephrotic syndrome. Eur J Clin Invest 1994; 24: 799—805.
20. Lawrence T. The Nuclear Factor NF-κB Pathway in Inflammation. Cold Spring Harb Perspect Biol 2009; 1: 6: a001651.
21. Sahali D., Pawlak A., Le Gouvello S. et al. Transcriptional and post-transcriptional alterations of IkappaBalpha in active minimal-change nephrotic syndrome. J Am Soc Nephrol 2001; 12: 1648—1658.
22. Stahn C., Löwenberg M., Hommes D. et al. Molecular mechanisms of glucocorticoid action and selective glucocorticoid receptor agonists. Mol Cell Endocrinol 2007; 15: 275 (1—2): 71—78.
23. Zheng Y., Chaudhry A., Kas A. et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature 2009; 458: 351—356.
24. Sellier-Leclerc A., Duval A., Riveron S. et al. A humanized mouse model of idiopathic nephrotic syndrome suggests a pathogenic role for immature cells. J Am Soc Nephrol 2007; 18: 2732—2739.
25. Lapillonne H., Leclerc A, Ulinski T. et al. Stem cell mobilization in idiopathic steroid-sensitive nephrotic syndrome. Pediat Nephrol 2008; 23 :1251—1256.
26. Ransom R.F., Lam N.G., Hallett M.A. et al. Glucocorticoids protect and enhance recovery of cultured murine podocytes via actin filament stabilization. Kidney Int 2005; 68: 2473—2483.
27. Schönenberger E., Ehrich J.H., Haller H. et al. The podocyte as a direct target of immunosuppressive agents. Nephrol Dial Transplant 2011; 26: 18—24.
28. Faul C., Donnelly M., Merscher-Gomez S. et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med 2008; 14: 9: 931—938.
29. Mundel P., Reiser J. Proteinuria: an enzymatic disease of the podocyte? Kidney Int 2010; 77: 571—580.
30. Shimada M., Araya C., Rivard C. et al. Minimal change disease: a “two-hit” podocyte immune disorder? Pediat Nephrol 2011; 26: 645—649.
31. Clement L.C., Avila-Casado C., Macé C. et al. Podocytesecreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med 2011; 17: 117—122.
Review
For citations:
Obukhova V.A. Pathogenetic mechanisms of idiopathic minimal-change nephrotic syndrome. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2014;59(4):10-15. (In Russ.)