Preview

Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics)

Advanced search

Genomic technologies in neonatology

https://doi.org/10.21508/1027-4065-2017-62-5-21-28

Abstract

In recent years, there has been a tremendous trend toward personalized medicine. Advances in the field forced clinicians, including neonatologists, to take a fresh look at prevention, tactics of management and therapy of various diseases. In the center of attention of foreign, and increasingly Russian, researchers and doctors, there are individual genomic data that allow not only to assess the risks of some form of pathology, but also to successfully apply personalized strategies of prediction, prevention and targeted treatment. This article provides a brief review of the latest achievements of genomic technologies in newborns, examines the problems and potential applications of genomics in promoting the concept of personalized medicine in neonatology. The increasing amount of personalized data simply impossible to analyze only by the human mind. In this connection, the need of computers and bioinformatics is obvious. The article reveals the role of translational bioinformatics in the analysis and integration of the results of the accumulated fundamental research into complete clinical decisions. The latest advances in neonatal translational bioinformatics such as clinical decision support systems are considered. It helps to monitor vital parameters of newborns influencing the course of a particular disease, to calculate the increased risks of the development of various pathologies and to select the drugs.

About the Authors

L. N. Chernova
Peoples' Friendship University of Russia
Russian Federation


I. V. Zhegalova
Peoples' Friendship University of Russia Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation


References

1. Khoury M.J., Gwinn M., Glasgow R.E., Kramer B.S. A Population Perspective on How Personalized Medicine Can Improve Health. Am J Prev Med 2012; 42 (6): 639–645. DOI: 10.1016/j.amepre.2012.02.012

2. Cornetta K., Brown C.G. Perspective: Balancing Personalized Medicine and Personalized Care. Acad Med 2013; 88 (3): 309–313. DOI:10.1097/ACM.0b013e3182806345

3. Chan I.S., Ginsburg G.S. Personalized Medicine: Progress and Promise. Annu Rev Genomics Hum Genet 2011; 12: 217– 244. DOI: 10.1146/annurev-genom-082410-101446

4. Feero W.G., Guttmacher A.E. Genomics, personalized medicine, and pediatrics. Acad Pediatr 2014; 14 (1): 14–22. DOI: 10.1016/j.acap.2013.06.008

5. Tebani A., Afonso C., Marret S., Bekri S. Omics-Based Strategies in Precision Medicine - Toward a Paradigm Shift in Inborn Errors of Metabolism Investigations. Int J Mol Sci 2016; 17 (9): E1555. DOI: 10.3390/ijms17091555

6. Stevens A., De Leonibus C., Hanson D., Whatmore A., Murray P., Donn R., Meyer S., Chatelain P., Clayton P. Pediatric perspective on pharmacogenomics. Pharmacogenomics 2013; 14 (15): 1889-905. DOI: 10.2217/pgs.13.193

7. Francis Collins Says Medicine in the Future Will Be Tailored to Your Genes. The Director of the National Institutes of Health Says Cheaper DNA Sequencing Will Make Personalized Care Routine. Wall Street Journal 2014; July 8. https://www.wsj.com/articles/francis-collins- says-medicine-in-thefuture-will-be-tailored-to-your-genes-1404763139

8. Brenner S.E., Kingsmore S., Mooney S.D., Nussbaum R., Puck J. Use of genome data in newborns as a starting point for life-long precision medicine. Pac Symp Biocomput 2016; 21: 568–575.

9. Landau Y.E., Lichter-Konecki U., Levy H.L. Genomics in newborn screening. J Pediatr 2014; 164 (1): 14–19. DOI: 10.1016/j.jpeds.2013.07.028. Epub 2013 Aug 27

10. Knoppers B.M., Senecal K., Borry P., Avard D. Whole-genome sequencing in newborn screening programs. Sci Transl Med 2014; 6 (229): 229cm2. DOI: 10.1126/scitranslmed.3008494

11. Levy H.L. Newborn screening: The genomic challenge. Mol Genet Genomic Med 2014; 2 (2): 81-84. DOI: 10.1002/mgg3.74

12. Tarini B.A., Goldenberg A.J. Ethical issues with newborn screening in the genomics era. Annu Rev Genomics Hum Genet 2012; 13: 381–393. DOI: 10.1146/annurev-genom-090711-163741

13. Goldenberg A.J., Sharp R.R. The ethical hazards and programmatic challenges of genomic newborn screening. JAMA 2012; 307 (5): 461–462. DOI: 10.1001/jama.2012.68

14. Waisbren S.E., Bäck D.K., Liu C., Kalia S.S., Ringer S.A., Holm I.A., Green R.C. Parents are interested in newborn genomic testing during the early postparum period. Genet Med 2015; 17 (6): 501–504. DOI: 10.1038/gim.2014.139

15. Miller N.A., Farrow E.G., Gibson M., Willig L.K., Twist G., Yoo B. et al. A 26-hour system of highly sensitive whole genome sequencing for emergency management of genetic diseases. Genome Med 2015; 7: 100. DOI: 10.1186/s13073-015-0221-8

16. Saunders C.J., Miller N.A., Soden S.E., Dinwiddie D.L., Noll A., Alnadi N.A. et al. Rapid Whole-Genome Sequencing for Genetic Disease Diagnosis in Neonatal Intensive Care Units. Sci Transl Med 2012; 4 (154): 154ra135. DOI: 10.1126/scitranslmed.3004041

17. Battersby A.J., Khara J., Wright V.J., Levy O., Kampmann B. Antimicrobial Proteins and Peptides in Early Life. Ontogeny and Translational Opportunities. Front Immunol 2016; 7: 309. DOI: 10.3389/fimmu.2016.00309. eCollection 2016

18. Marchant A., Kollmann T.R. Understanding the ontogeny of the immune system to promote immune-mediated health for life. Front Immunol 2015; 6: 77. DOI:10.3389/fimmu.2015.00077

19. WHO. Levels and Trends in Childhood Mortality. New York, USA: WHO, United Nations Children’s Fund, 2013; http://www.who.int/maternal_child_adolescent/documents/levels_trends_child_mortality_2013/en/

20. Du W.X., He Y., Jiang H.Y., Ai Q., Yu J.L. Interleukin 35: A novel candidate biomarker to diagnose early onset sepsis in neonates. Clin Chim Acta 2016; 462: 90–95. DOI: 10.1016/j.cca.2016.09.005

21. Nellis M.E., Pon S., Giambrone A.E., Coleman N.E., Reiss J., Mauer E., Greenwald B.M. The Diagnostic Accuracy of Serum Procalcitonin for Bacteremia in Critically Ill Children. Infect Dis Clin Pract ( Baltim Md) 2016; 24 (6): 343–347. DOI:10.1097/IPC.0000000000000432

22. Arrieta M.C., Stiemsma L.T., Amenyogbe N., Brown E.M., Finlay B. The intestinal microbiome in early life: health and disease. Frontiers in immunology 2014; 5: 427. DOI: 10.3389/fimmu.2014. 00427

23. Wopereis H., Oozeer R., Knipping K., Belzer C., Knol J. The first thousand days–intestinal microbiology of early life: establishing a symbiosis. Pediatr Allergy Immunol 2014; 25 (5): 428–438. DOI: 10.1111/pai.12232

24. Penders J., Gerhold K., Stobberingh E.E., Thijs C., Zimmermann K., Lau S. et al. Establishment of the intestinal microbiota and its role for atopic dermatitis in early childhood. J Allergy Clin Immunol 2013; 132 (3): 601–607. DOI: 10.1016/j.jaci.2013.05.043

25. Storro O., Avershina E., Rudi K. Diversity of intestinal microbiota in infancy and the risk of allergic disease in childhood. Curr Opin Allergy Clin Immunol 2013; 13 (3): 257–262. DOI: 10.1097/ACI.0b013e328360968b

26. Kostic A.D., Gevers D., Siljander H., Vatanen T., Hyotylainen T., Hamalainen A.M. et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 2015; 17 (2): 260– 273. DOI: 10.1016/j.chom.2015.01.001

27. Martin R., Makino H., Cetinyurek Yavuz A., Ben-Amor K., Roelofs M., Ishikawa E., Kubota H. et al. Early-Life Events, Including Mode of Delivery and Type of Feeding, Siblings and Gender, Shape the Developing Gut Microbiota. PLoS One 2016; 11 (6): e0158498. DOI: 10.1371/journal.pone.0158498

28. Laursen M., Zachariassen G., Bahl M., Bergström A., Høst A., Michaelsen K. et al. Having older siblings is associated with gut microbiota development during early childhood. BMC Microbiol 2015; 15: 154. DOI: 10.1186/s12866-015-0477-6

29. Darmasseelane K., Hyde M.J., Santhakumaran S., Gale C., Modi N. Mode of delivery and offspring body mass index, overweight and obesity in adult life: a systematic review and meta-analysis. PLoS One 2014; 9 (2): e87896. DOI: 10.1371/journal.pone.0087896

30. Fooladi A.A., Khani S., Hosseini H.M., Mousavi S.F., Aghdam E.M., Nourani M.R. Impact of altered early infant gut microbiota following breastfeeding and delivery mode on allergic diseases. Inflammation & allergy drug targets 2013; 12 (6): 410–418.

31. Xavier R.J., Podolsky D.K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007; 448 (7152): 427– 434. DOI:10.1038/nature06005

32. Giongo A., Gano K.A., Crabb D.B., Mukherjee N., Novelo L.L., Casella G. et al. Toward defining the autoimmune microbiome for Type 1 diabetes. ISME J 2011; 5 (1): 82–91. DOI: 10.1038/ismej.2010.92

33. Qin J., Li Y., Cai Z., Li S., Zhu J., Zhang F. et al. A metagenome-wide association study of gut microbiota in Type 2 diabetes. Nature 2012; 490 (7418): 55–60. DOI: 10.1038/nature11450

34. Claud E.C., Keegan K.P., Brulc J.M., Lu L., Bartels D., Glass E. et al. Bacterial community structure and functional contributions to emergence of health or necrotizing enterocolitis in preterm infants. Microbiome 2013; 1 (1): 20. DOI: 10.1186/2049-2618-1-20

35. Fujimura K.E., Sitarik A.R., Havstad S., Lin D.L., Levan S., Fadrosh D., Panzer A.R. et al. Neonatal gut microbiota associates with multisensitized childhood atopy and T-cell differentiation. Nat Med 2016; 22 (10): 1187–1191. DOI: 10.1038/nm.4176

36. Ridaura V.K., Faith J.J., Rey F.E., Cheng J., Duncan A.E., Kau A.L. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013; 341 (6150): 1241214. DOI: 10.1126/science.1241214

37. Mueller N.T., Mao G., Bennet W.L., Hourigan S.K., Dominguez-Bello M.G., Appel L.J. et al. Does vaginal delivery mitigate or strengthen the intergenerational association of overweight and obesity. Findings from the boston birth cohort. Int J Obes ( Lond) 2017; 41 (4): 497–501. DOI: 10.1038/ijo.2016.219

38. Li H.T., Zhou Y.B., Liu J.M. The impact of cesarean section on offspring overweight and obesity: a systematic review and meta-analysis. Int J Obes (Lond) 2013; 37: 893–899. DOI:10.1038/ijo.2012.195

39. Allegaert K., Verbesselt R., Naulaers G., van den Anker J.N., Rayyan M., Debeer A., de Hoon J. Developmental pharmacology: neonates are not just small adults…. Acta Clin Belg 2008; 63 (1): 16–24. DOI:10.1179/acb.2008.003

40. Hines R.N. Developmental expression of drug metabolizing enzymes: impact on disposition in neonates and young children. Int J Pharm 2013; 452 (1–2): 3–7. DOI: 10.1016/j.ijpharm.2012.05.079

41. de Wildt S.N. Profound changes in drug metabolism enzymes and possible effects on drug therapy in neonates and children. Expert Opin Drug Metab Toxicol 2011; 7 (8): 935– 948. DOI: 10.1517/17425255.2011.577739

42. Aschner J.L., Gien J., Ambalavanan N., Kinsella J.P., Konduri G.G. et al. Challenges, priorities and novel therapies for hypoxemic respiratory failure and pulmonary hypertension in the neonate. J Perinatol 2016; 36 (Suppl 2): S32–36. DOI: 10.1038/jp.2016.47

43. Fanni D., Ambu R., Gerosa C., Nemolato S., Castagnola M., Van Eyken P. et al. Cytochrome P450 genetic polymorphism in neonatal drug metabolism: role and practical consequences towards a new drug culture in neonatology. Int J Immunopathol Pharmacol 2014; 27 (1): 5– 13. DOI:10.1177/039463201402700102

44. Joshi M.S., Montgomery K.A., Giannone P.J., Bauer J.A., Hanna M.H. Renal injury in neonates: use of ‘omics’ for developing precision medicine in neonatology. Pediatr Res 2017; 81 (1–2): 271–276. DOI: 10.1038/pr.2016.206

45. Askenazi D.J., Koralkar R., Levitan E.B., Goldstein S.L., Devarajan P., Khandrika S. et al. Baseline values of candidate urine acute kidney injury biomarkers vary by gestational age in premature infants. Pediatr Res 2011; 70 (3): 302–306. DOI: 10.1203/PDR.0b013e3182275164

46. Nguyen M.T., Ross G.F., Dent C.L., Devarajan P. Early prediction of acute renal injury using urinary proteomics. Am J Nephrol 2005; 25 (4): 318–326. DOI:10.1159/000086476

47. Arrieta M.C., Stiemsma L.T., Amenyogbe N., Brown E.M., Finlay B. The intestinal microbiome in early life: health and disease. Front Immunol 2014; 5: 427. DOI: 10.3389/fimmu.2014. 00427

48. Xavier R.J., Podolsky D.K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007; 448 (7152): 427– 434. DOI:10.1038/nature06005

49. Tremblay É. Gene expression profiling in necrotizing enterocolitis reveals pathways common to those reported in Crohn’s disease. BMC Med Genomics 2016; 9: 6. DOI: 10.1186/ s12920-016-0166-9

50. American Medical Informatics Association’s official website. http://www.amia.org/applications-informatics/translationalbioinformatics 51. Sarkar I.N., Butte A.J., Lussier Y.A., Tarczy-Hornoch P., Ohno-Machado L. Translational bioinformatics: linking knowledge across biological and clinical realms. J Am Med Inform Assoc. 2011; 18 (4): 354–357.

51. Butte A.J. Translational bioinformatics: coming of age. J Am Med Inform Assoc 2008; 15 (6): 709–714.

52. Blount M., Ebling M.R., Eklund J.M., James A.G., McGregor C., Percival N., Smith K.P., Sow D. Real-time analysis for intensive care: development and deployment of the artemis analytic system. IEEE Eng Med Biol Mag 2010; 29 (2): 110–118. DOI: 10.1109/MEMB.2010.936454

53. Saria S., Rajani A.K., Gould J., Koller D., Penn A.A. Integration of early physiological responses predicts later illness severity in preterm infants, Sci Trans Med 2010; 2 (48): 48ra65. DOI: 10.1126/scitranslmed.3001304

54. Palma J.P., Benitz W.E., Tarczy-Hornoch P., Butte A.J., Longhurst C.A. Neonatal Informatics: Transforming Neonatal Care Through Translational Bioinformatics. Neoreviews 2012; 13 (5): e281-e284. DOI:10.1542/neo.13-5-e281

55. Gur I., Riskin A., Markel G., Bader D., Nave Y., Barzilay B., Eyal F.G., Eisenkraft A. Pilot study of a new mathematical algorithm for early detection of late-onset sepsis in very lowbirth- weight infants. Am J Perinatol 2015; 32 (4): 321–330. DOI: 10.1055/s-0034-1384645


Review

For citations:


Chernova L.N., Zhegalova I.V. Genomic technologies in neonatology. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2017;62(5):21-28. (In Russ.) https://doi.org/10.21508/1027-4065-2017-62-5-21-28

Views: 1208


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)