ПЕРСОНАЛИЗИРОВАННАЯ МЕДИЦИНА: ГЕНОМ, ЭЛЕКТРОННОЕ ЗДРАВООХРАНЕНИЕ И ИНТЕЛЛЕКТУАЛЬНЫЕ СИСТЕМЫ. ЧАСТЬ 2. МОЛЕКУЛЯРНАЯ ГЕНЕТИКА И МЕТОДЫ ИНТЕЛЛЕКТУАЛЬНОГО АНАЛИЗА
https://doi.org/10.21508/1027-4065-2017-62-6-16-22
Аннотация
Об авторе
Б. А. КобринскийРоссия
Кобринский Борис Аркадьевич – доктор медицинских наук, профессор, зав. лабораторией систем поддержки принятия клинических решений.
117312 Москва, пр-т 60-летия Октября, д.9Список литературы
1. Кобринский Б.А. Континуум переходных состояний организма и мониторинг динамики здоровья детей. 2-е изд. М–Берлин: Direct-Media, 2016; 220. [Kobrinskii B.A. Continuum of transitional states of the body and monitoring the dynamics of children’s health. Moscow – Berlin: DirectMedia, 2016; 220. (in Russ)]
2. Зарубина Т.В. Направления информатизации здравоохранения России на современном этапе. Информационно-измерительные и управляющие системы 2013; 11 (10): 4–8. [Zarubina T.V. Directions of informatization of public health services in Russia at the present stage. Informatsionno-izmeritel’nye I upravlyeyushie sistemy 2013; 11(10): 4–8. (in Russ)]
3. Ehealth L.-W. A dilemma for Europe. Brit J Healthcare Computing & Information Management 2004; 21 (10): 20–23.
4. Wilson E.V. (Ed.) Patient-Centered E-Health. Hershey, New York: Information Science Reference, 2009; 300. Режим доступа: http://222.255.132.18:8085/Portals/0/Docs/112144754-1605660167.pdf
5. Kobrinsky B., Tester I., Demikova N., Sedov Yu., Marjanchik B., Taperova L. et al. A Multifunctional System of the National Genetic Register. Medinfo’98: Proc. 9th International Congress on Medical Informatics. Pt. 1. Seoul, South Korea, August 18–22, 1998; 121–125.
6. Kobrinskii B. E-Health and Telemedicine: Current State and Future Steps. E-Health Telecommunication Systems and Networks 2014; 3 (4): 58–64. Режим доступа: http://www.scirp.org/journal/PaperInformation.aspx?paperID=52099
7. Кобринский Б.А. Единое информационное пространство: E-HEALTH и M-HEALTH. Врач и информационные технологии 2016; 4: 57-66. Режим доступа: www. idmz.ru/idmz_site.nsf/pages/vit2016_4.htm [Kobrinskii B.A. Common information space: eHealth and mHealth. Vrach I informatsionnye tekhnologii 2016; 4:57–66. (in Russ)].www.idmz.ru/idmz_site.nsf/pages/vit2016_4.htm
8. Shah S.N., Shaheen S. Artificial Intelligence (AI), Genomics and Personalized Medicine. Biotechnological Res 2016; 2 (4): 173-175. Режим доступа: biotechnologicalresearch.com/index.php/BR/article/.../42/41
9. Silber D. eHealth: The case for eHealth. EIPA 2003/E/01. Режим доступа: http://www.eipa.nl
10. Садовничий В.А., Соколов М.Э., Макаровец Н.А., Буданов В.М., Подольский В.Е. Механорецепторная тактильная диагностика и тактильная трансляция в эндоскопической хирургии. М: Литерра 2013; 224. Режим доступа: sa.msu.ru/site/download/141. [Sadovnichij V.A., Sokolov M. Eh., Makarovets N.A., Budanov V.M., Podol’skij V.E. Mechanoreceptor tactile diagnosis and tactile translation in endoscopic surgery. Moscow: Literra, 2013; 224. (in Russ)]. www. sa.msu.ru/site/download/141
11. Awwalu J., Garba A.G., Ghazvini A., Atuah R. Artificial Intelligence in Personalized Medicine Application of AI Algorithms in Solving Personalized Medicine Problems. Intern J Computer Theory and Engineering 2015; 7 (6): 439–443. Режим доступа: http://www.ijcte.org/index.php?m=content&c=index&a=show&catid=66&id=1197
12. Alyass A., Turcotte M., Meyre D. From big data analysis to personalized medicine for all: challenges and opportunities. BMC medical genomics 2015; 8 (1): 33–45. Режим доступа: https://bmcmedgenomics.biomedcentral.com/articles/10.1186/s12920-015-0108-y
13. Deng L., Yu D. Deep Learning Methods and Applications. Foundations and Trends in Signal Processing 2014; 7 (3–4): 197–387. Режим доступа: http://dx.doi.org/10.1561/2000000039
14. Auria L., Moro R.A. Support vector machines (SVM) as a technique for solvency analysis. Discussion Papers of DIW Berlin, German Institute for Economic Research, 2008; 811. Режим доступа: http://econpapers.repec.org/paper/diwdiwwpp/dp811.htm
15. Kosorok M.R. Personalized medicine and artificial intelligence. North Carolina at Chapel Hill, 2012; 1–50. Режим доступа: http://www.stat.purdue.edu/symp2012/slides/session_15/Kosorok.pdf
16. Yang J., Benyamin B., McEvoy B.P., Gordon S., Henders A.K., Nyholt D.R. et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet 2010; 42 (7): 565–569. DOI: 10.1038/ng.608.
17. Kumar S., Kaur G. Detection of Heart Diseases Using Fuzzy Logic. IJETT 2013; 4 (6): 2694–2699. Режим доступа: ijettjournal.org/volume-4/issue-6/IJETT-V4I6P190.pdf
18. Флах П. Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных. М: ДМК Пресс 2015; 400. Режим доступа: dmkpress. com/catalog/computer/data/978-5-97060-273-7/ [Flakh P. Machine learning. The science and art of constructing algarithms that extract. Knowledge from data. Moscow: DMK Press, 2015; 400. (in Russ)]
19. Kourou K., Exarchos Th.P., Exarchos K.P., Karamouzis M.V., Fotiadis D.I. Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology J 2015; 13 (1): 8–17. Режим доступа: www.elsevier.com/locate/csbj
20. Polley M.-Y.C., Freidlin B., Korn E.L., Conley В.Д., Abrams J.S., McShane L.M. Statistical and practical considerations for clinical evaluation of predictive biomarkers. J of the National Cancer Institute 2013; 105 (22): 1677–1683. Режим доступа: https://www.ncbi.nlm.nih.gov/pubmed/24136891
21. Cruz J.A., Wishart D.S. Applications of machine learning in cancer prediction and prognosis. Cancer Information 2007; 11 (2): 5977. Режим доступа: https://www.ncbi.nlm.nih.gov/pubmed/19458758
22. Niknejad A, Petrovic D. Introduction to computational intelligence techniques and areas of their applications in medicine. In: Medical Applications of Artificial Intelligence. A. Agah (ed.). CRC Press, 2013; 51–70. Режим доступа: https:// www.crcpress.com/Medical-Applications-of-Artificial-Intelligence/Agah/p/book/9781439884331
23. Libbrecht M.W., Noble W.S. Machine learning applications in genetics and genomics. Nature Reviews Genetics 2015; 16 (6): 321–332. Режим доступа: https://www.ncbi.nlm.nih. gov/pubmed/25948244
24. Galit S., Nitin R.P., Peter C.B. Data Mining for Business Intelligence: Concepts, Techniques and Applications in Microsoft Excel® with XLMiner®. 3nd ed. Wiley, 2016; 552. Режим доступа: http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118729277.html
25. Bardan R. Artificial Neural Networks. Applications in Urology. Victor Babes University of Medicine and Pharmacy: Department of Urology. Timisoara, Romania, 2004; 3: 289–296. Режим доступа: http://www.tmj.ro/article.php?art=890984717124462
26. Khan I.Y., Zope P.H., Suralkar S.R. Importance of Artificial Neural Network in Medical Diagnosis disease like acute nephritis disease and heart disease. IJESIT 2013; 3 (2): 210–217. Режим доступа: https://scholar.google.com/citations?view_op=view_citation&hl=ru&user=3RNky8UAAAAJ&citation_for_view=3RNky8UAAAAJ:L8Ckcad2t8MC
27. Orunesu E., Bagnasco M., Salmaso C., Altrinetti V., Del Monte P., Pesce G., Marugo M., Mela G.S. Use of an artificial neural network to predict graves ‟disease outcome within 2 years of drug withdrawal”. Eur J Clin Invest 2004; 34 (3): 210–217. Режим доступа: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2362.2004.01318.x/abstract
28. Jang K.J., Balakrishnan G., Syed Z., Verma N. Scalable customization of atrial fibrillation detection in cardiac monitoring devices: increasing detection accuracy through personalized monitoring in large patient populations. Conference proceedings: Annual International Conference of the Engineering in` Medicine and Biology Society, 2011; 2184– 2187. Режим доступа: https://www.ncbi.nlm.nih.gov/pubmed/22254772.
29. Stephens Z.D., Lee S.Y., Faghri F., Campbell R.H., Zhai C., Efron M.J. et al. Big data: astronomical or genomical? PLoS Biol 2015; 13 (7): e1002195. DOI: 10.1371/journal.pbio.1002195.
30. Li L., Ruau D.J., Patel C.J., Weber S.C., Chen R., Tatonetti N.P. et al. Disease risk factors identified through shared genetic architecture and electronic medical records. Sci Transl Med 2014; 6 (234): 234ra57. DOI: 10.1126/scitranslmed.3007191.
31. Petitti D.B. Meta-analysis, Decision Analysis and Costeffectiveness Analysis: Methods for Quantitative Synthesis in Medicine, 2nd ed. New York: Oxford University Press, 2000; 320. www.global.oup.com/academic/product/metaanalysis-decision-analysis-and-cost-effectiveness-analysis9780195133646?cc=ru&lang=en&
32. Higgins J.P.T., Thompson S.G. Quantifying heterogeneity in a meta-analysis. Statistics in Medicine 2002; 21 (11): 1539–1558. Режим доступа: https://www.ncbi.nlm.nih.gov/pubmed/12111919
Рецензия
Для цитирования:
Кобринский Б.А. ПЕРСОНАЛИЗИРОВАННАЯ МЕДИЦИНА: ГЕНОМ, ЭЛЕКТРОННОЕ ЗДРАВООХРАНЕНИЕ И ИНТЕЛЛЕКТУАЛЬНЫЕ СИСТЕМЫ. ЧАСТЬ 2. МОЛЕКУЛЯРНАЯ ГЕНЕТИКА И МЕТОДЫ ИНТЕЛЛЕКТУАЛЬНОГО АНАЛИЗА. Российский вестник перинатологии и педиатрии. 2017;62(6):16-22. https://doi.org/10.21508/1027-4065-2017-62-6-16-22
For citation:
Kobrinskii B.A. PERSONALIZED MEDICINE: GENOME, ELECTRONIC HEALTH AND INTELLIGENT SYSTEMS. PART 2. MOLECULAR GENETICS AND METHODS OF INTELLECTUAL ANALYSIS. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2017;62(6):16-22. (In Russ.) https://doi.org/10.21508/1027-4065-2017-62-6-16-22