Preview

Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics)

Advanced search

Glycogen storage disease type II (Pompe disease) in children

Abstract

The paper gives the data available in the literature, which reflect the manifestations, diagnosis, and current treatments of the rare (orphan) inherited disease glycogen storage disease type II or Pomp disease in children, as well as its classification. The infant form is shown to be most severe, resulting in death from cardiovascular or pulmonary failure generally within the first year of a child’s life. Emphasis is laid on major difficulties in the differential and true diagnosis of this severe disease. Much attention is given to the new pathogenetic treatment — genetically engineered enzyme replacement drug Myozyme®. The authors describe their clinical case of a child with the juvenile form of glycogen storage disease type II (late-onset Pompe disease). Particular emphasis is laid on the clinical symptoms of the disease and its diagnostic methods, among which the morphological analysis of a muscle biopsy specimen by light and electron microscopies, and enzyme and DNA diagnoses are of most importance. The proband was found to have significant lysosomal glycogen accumulation in the muscle biopsy specimen, reduced lymphocyte acid α-1,4-glucosidase activity to 4,2 nM/mg/h (normal value, 13,0—53,6 nM/mg/h), described in the HGMD missense mutation database from 1000 G>A p.Gly334er of the GAA in homozygous state, which verified the diagnosis of Pompe disease. 

About the Authors

A. N. Semyachkina
Research Clinical Institute of Pediatrics, Moscow
Russian Federation


V. S. Sukhorukov
Research Clinical Institute of Pediatrics, Moscow
Russian Federation


T. M. Bukina
Russian Academy of Medical Sciences, Moscow
Russian Federation


M. I. Yablonskaya
Research Clinical Institute of Pediatrics, Moscow
Russian Federation


E. S. Merkuryeva
Research Clinical Institute of Pediatrics, Moscow
Russian Federation


M. N. Kharabadze
Research Clinical Institute of Pediatrics, Moscow
Russian Federation


E. A. Proskurina
Russian Academy of Medical Sciences, Moscow
Russian Federation


E. Yu. Zakharova
Russian Academy of Medical Sciences, Moscow
Russian Federation


A. V. Brydun
Research Clinical Institute of Pediatrics, Moscow
Russian Federation


P. A. Shatalov
Research Clinical Institute of Pediatrics, Moscow
Russian Federation


P. V. Novikov
Research Clinical Institute of Pediatrics, Moscow
Russian Federation


References

1. Van der Ploeg A.T., Reuser A. Pompe s disease. Lancet 2008; 372: 1342—1353.

2. Hoefsloot L.H., Hoogeveen-Westerveld M., Reuser A.J. et al. Characterization of the human lysosomal alpha-glucosidase gene. Biochem J 1990; 272: 2: 493—497.

3. Fukuda T., Ewan L., Bauer M. et al. Dysfunction of endocytic and autophagic pathways in lysosomal storage disease. Ann Neurol 2006; 59: 700—708.

4. De Filippi P., Ravaglia S., Bembi B. et al. The angiotensinconverting enzyme insertion/deletion polymorphism modifies the clinical outcome in patients with Pompe disease. Genet Med 2010; 12: 4: 206—211.

5. Hagemans M.L., Winkel L.P., Van Doorn P.A. et al. Clinical manifestation and natural course of late-onset Pompe’s disease in 54 Dutch patients. Brain 2005; 128: Pt 3: 671—677.

6. Sacconi S., Bocquet J.D., Chanalet S. et al. Abnormalities of cerebral arteries are frequent in patients with late-onset Pompe’s disease. J Neurol 2010; 257: 10: 1730—1733.

7. Carlier R.Y., Laforet P., Wary C. et al. Whole-body muscle MRI in 20 patients suffering from late onset Pompe disease: Involvement patterns. Neuromuscul Disord 2011; 21: 11: 791—799.

8. Chamoles N., Ghavami A., Pinto B.M. et al. Direct multiplex assay of lysosomal enzymes in dried blood spots for newborn screening. Clin Chem 2004; 50: 10: 1785—1796.

9. Lukacs Z., Nieves Cobos P., Mengel E. et al. Diagnostic efficacy of the fluorometric determination of enzyme activity for Pompe disease from dried blood specimens compared with lymphocytes-possibility for newborn screening. J inherit Metab Dis 2010; 33: 1: 43—50.

10. Slonim A.E., Bulone L., Goldberg T. et al. Modification of the natural history of adult-onset acid maltase deficiency by nutrition and exercise therapy. Muscle Nerve 2007; 35: 1: 70—77.

11. Kishnani P.S., Corzo D., Nicolino M. et al. Recombinant human acid [alpha]-glucosidase: major clinical benefits in infantile-onset. Neurology 2007; 68: 99—109.

12. Strothotte S., Strigl-Pill N., Grunert B. et al. Enzyme replacement therapy with alglucosidase alfa in 44 patients with late-onset glycogen storage disease type 2: 12-month results of an observational clinical trial. J Neurol 2010; 257: 91—97.

13. Regnery C., Kornblum C., Hanisch F. et al. 36 month adult Pompe disease patients under alglucosidase alfa enzyme replacement therapy. J Inherit Metab Dis 2012; 31: 141—149.

14. Bembi B., Pisa F.E., Confalonieri M. et al. Long-term observational, non-randomized study of enzyme replacement therapy in late-onset glycogenosis type II. J Inherit Metab Dis 2010; 33: 6: 727—735.

15. Desnuelle C. Перевод: Ковальчук М.О. Поздняя форма болезни Помпе: диагностические и терапевтические подходы. Нервно-мышечные болезни 2012; 3: 3—15. (Desnuelle C. Translation: Koval'chuk M.O. Late-onset Pompe disease: diagnostics and treatment approach. Nervno-myshechnye bolezni 2012; 3: 3—15.)

16. Byrne B.J., Kishnani P.S., Case L.E. et al. Pompe disease: design, methodology, and early findings from the Pompe Registry. Mol Gen Metab 2011; 103: 1—11.


Review

For citations:


Semyachkina A.N., Sukhorukov V.S., Bukina T.M., Yablonskaya M.I., Merkuryeva E.S., Kharabadze M.N., Proskurina E.A., Zakharova E.Yu., Brydun A.V., Shatalov P.A., Novikov P.V. Glycogen storage disease type II (Pompe disease) in children. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2014;59(4):48-55. (In Russ.)

Views: 1166


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)