Influence of the social, medicinal and environmental factors upon the development of sporadic congenital heart diseases
https://doi.org/10.21508/1027-4065-2018-63-1-14-21
Abstract
The epidemiological studies have shown an increase of congenital heart diseases in the industrial regions of the Russian Federation. The etiology and pathogenesis of most congenital heart defects are still unknown despite high achievements in cardiology and cardiac surgery. The purpose of this review is to analyze the literature data devoted to the influence of a complex of exogenous and endogenous factors, including the genetic ones, upon the development of the sporadic congenital heart diseases, which are not associated with the chromosomal abnormalities. It isshown that the sporadic congenital heart diseases associate with the women's social factors such as a low social status and level of education, smoking, and alcohol. The air pollution with nanoparticles smaller than 10 µm is a risk factor for the development of the congenital heart diseases and other pathological conditions of the cardiovascular system. It has been proven that the alleles and genotypes of polymorphic variants of genes GATA6, NPPB (rs198388 and rs198389), CYP1A1, CYP1B1, and NAT2 have the associative links with the congenital heart disease in the children.
About the Authors
A. V. ShabaldinRussian Federation
A. V. Tsepokina
Russian Federation
S. A. Shmulevich
Russian Federation
M. Yu. Tabakaev
Russian Federation
E. V. Shabaldina
Russian Federation
References
1. Bokeria L.A., Gudkova R.G. Cardiovascular surgery-2014. Diseases and congenital anomalies of the circulatory system, A.N. Bakulev. Moscow: 2015; 226. (in Russ)
2. Yu D., Feng Y., Yang L., Da M., Fan C., Wang S., Mo X. Maternal Socioeconomic Status and the Risk of Congenital Heart Defects in Offspring: A Meta-Analysis of 33 Studies. PLoS ONE 2014; 9:(10): e111056. DOI: 10.1371/journal. pone.0111056
3. Antonova V.I., Bogacheva E.V., Kitaeva Yu.Yu. The role of exogenous factors in the formation of congenital malformations. Jekologija cheloveka 2010; 6: 30–35. (in Russ)
4. Ganu R.S., Harris R.A., Collins K., Aagaard K. M. Early Origins of Adult Disease: Approaches for Investigating the Programmable Epigenome in Humans, Nonhuman Primates, and Rodents. ILAR J 2012; 53: 3–4: 306–321.
5. Safiullina А.R., Yakovleva L.V. Analysis of risk factors of congenital septal heart defects progression. Sovremennye problemy nauki i obrazovanija 2012; 4: 24–29. (in Russ)
6. Singh J. Mechanism of developmental toxicity of carbon monoxide. Reprod Toxicol 2007; 24: (1): 66.
7. Dadvand P., Rankin J., Rushton S., Pless-Mulloli T. Association Between Maternal Exposure to Ambient Air Pollution and Congenital Heart Disease: A Register-based Spatiotemporal Analysis. American Journal of Epidemiology 2011; 173:(2): 171–182. doi.org/10.1093/aje/kwq342.
8. Oyama K., ElNachef D., Zhang Y., Sdek P., MacLellan W.R. Epigenetic regulation of cardiac myocyte differentiation. Front Genet 2014; 5: 375. DOI: 10.3389/ fgene.2014.00375/
9. Liddy K.A., White M.Y., Cordwell S.J. Functional decorations: post-translational modifications and heart disease delineated by targeted proteomics. Genome Medicine 2013; 5:(2): 20. doi.org/10.1186/gm424
10. Fung A., Manlhiot C., Naik S., Rosenberg H., Smythe J., Lougheed J., Mital S. Impact of Prenatal Risk Factors on Congenital Heart Disease in the Current Era. Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease 2013; 2(3): e000064. doi.org/10.1161/ JAHA.113.000064
11. Lee L.J., Lupo P.J. Maternal smoking during pregnancy and the risk of congenital heart defects in offspring: a systematic review and metaanalysis. Pediatr Cardiol 2013; 34(2): 398– 407. DOI: 10.1007/s00246-012-0470-x
12. Dechanet C., Brunet C., Anahory T., Hamamah S., He-don B., Dechaud H. Effects of cigarette smoking on female reproduction: from oocyte to embryo (Part I). Gynecol Ob-stet Fertil 2011; 39(10): 559–566. DOI: 10.1016/j.gyobfe. 2011.07.033
13. Ou Y., Mai J., Zhuang J., Liu X., Wu Y., Gao X., Nie Z., Qu Y., Chen J., Kielb C., Lauper U., Lin S. Risk factors of different congenital heart defects in Guangdong. China. Pediatr Res 2016; 79(4): 549–58. DOI: 10.1038/pr.2015.264
14. Chen J., Han M., Manisastry S.M., Trotta P., Serrano M.C., Huhta J.C., Linask K.K. Molecular effects of lithium exposure during mouse and chick gastrulation and subsequent valve dysmorphogenesis. Birth Defects Res A Clin Mol Teratol 2008; 82: 508e18.
15. Huhta J., Linask K.K. Environmental origins of congenital heart disease: the heart-placenta connection. Semin Fetal Neonatal Med 2013; 18(5): 245–250. DOI: 10.1016/j. siny.2013.05.003
16. Snijder C.A., Vlot I.J., Burdorf A., Obermann-Borst S.A., Helbing W.A., Wildhagen M.F., Steegers E.A., Steegers-Theunissen R.P. Congenital heart defects and parental occupational exposure to chemicals. Hum Reprod 2012; 27(5): 1510–1517. DOI: 10.1093/humrep/des043
17. Gilboa S.M., Mendola P., Olshan A.F., Langlois P.H., Savitz D.A., Loomis D., Herring A.H., Fixler D.E. Relation between ambient air quality and selected birth defects, seven county study, Texas, 1997–2000. Am J Epidemiol 2005; 162(3): 238–252.
18. Hansen C.A., Barnett A.G., Jalaludin B.B., Morgan G.G. Ambient air pollution and birth defects in brisbane, Australia. PLoS ONE 2009; 4(4): e5408. DOI:10.1371/journal.pone.0005408.
19. Padula A.M., Tager I.B., Carmichael S.L., Hammond S.K., Yang W., Lurmann F., Shaw G.M. Ambient Air Pollution and Traffic Exposures and Congenital Heart Defects in the San Joaquin Valley of California. Paediatr Perinatal Epidemiol 2013; 27(4): 329–339. DOI:10.1111/ppe.12055.
20. Delfino R.J., Staimer N., Tjoa T., Gillen D.L., Polidori A., Arhami M., Kleinman M.T., Vaziri N.D., Longhurst J., Sioutas C. Air pollution exposures and circulating biomarkers of effect in a susceptible population: clues to potential causal component mixtures and mechanisms. Environ Health Per-spect 2009; 117(8): 1232–1238. DOI: 10.1289/ehp.0800194
21. Mills N.L., Donaldson K., Hadoke P.W., Boon N.A., MacNee W., Cassee F.R., Sandström T., Blomberg A., Newby D.E. Adverse cardiovascular effects of air pollution. Nat Clin Pract Cardiovasc Med 2009; 6(1): 36–44. DOI: 10.1038/ncpcardio1399
22. Stölzel M., Breitner S., Cyrys J., Pitz M., Wölke G., Krey-ling W., Heinrich J., Wichmann H.E., Peters A. Daily mortality and particulate matter in different size classes in Erfurt, Ger-many. J Expo Sci Environ Epidemiol 2007; 17(5): 458–467. DOI: 10.1038/sj.jes.7500538
23. Delfino R.J., Staimer N., Tjoa T., Polidori A., Arhami M., Gillen D.L., Kleinman M.T., Vaziri N.D., Longhurst J., Zaldi-var F., Sioutas C. Circulating biomarkers of inflammation, antioxidant activity, and platelet activation are associated with primary combustion aerosols in subjects with coronary artery disease. Environ Health Perspect 2008; 116(7): 898–906. DOI: 10.1289/ehp.11189.
24. Anway M.D., Cupp A.S., Uzumcu M., Skinner M.K. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 2005; 308(5727): 1466–1469. DOI: 10.1126/ science.1108190
25. Tong H., McGee J.K., Saxena R.K., Kodavanti U.P., Devlin R.B., Gilmour M.I. Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice. Toxicol Appl Pharmacol 2009; 239(3): 224–232. DOI: 10.1016/j.taap.2009.05.019
26. Vinzents P.S., Møller P., Sørensen M., Knudsen L.E., Hertel O., Jensen F.P., Schibye B., Loft S. Personal Exposure to Ultrafine Particles and Oxidative DNA Damage. Environ Health Per-spect 2005; 113(11): 1485–1490. DOI:10.1289/ehp.7562
27. Kusuma L., Dinesh S.M., Savitha M.R., Krishnamurthy B., Narayanappa D., Ramachandra N.B. A maiden report on CRELD1 single-nucleotide polymorphism association in congenital heart disease patients of Mysore, South India. Genet Test Mol Biomarkers 2011; 15(7–8): 483–487. DOI: 10.1089/gtmb.2010.0246
28. Robinson S.W., Morris C.D., Goldmuntz E., Reller M.D., Jones M.A., Steiner R.D., Maslen C.L. Missense Mutations in CRELD1 Are Associated with Cardiac Atrioventricular Septal Defects. Am J Hum Genet 2003; 72(4): 1047–1052. DOI: 10.1086/374319
29. Ghosh P., Bhaumik P., Ghosh S., Ozbek U., Feingold E., Maslen C., Sarkar B., Pramanik V., Biswas P., Bandyopadhyay B., Dey S.K. Polymorphic Haplotypes of CRELD1 Differentially Predispose Down Syndrome and Euploids Individuals to Atrioventricular Septal Defect. Am J Med Genet A 2012; 158A(11): 2843–2848. DOI: 10.1002/ajmg.a.35626
30. Zatyka M., Priestley M., Ladusans E.J., Fryer A.E., Mason J., Latif F., Maher E.R. Analysis of CRELD1 as a candidate 3p25 atrioventicular septal defect locus (AVSD2). Clin Genet 2005; 67(6): 526–525.
31. Maslen C.L., Babcock D., Robinson S.W., Bean L.J., Dooley K.J., Willour V.L., Sherman S.L. CRELD1 mutations contribute to the occurrence of cardiac atrioventricular septal defects in down syndrome. Am J Med Genet A 2006; 140(22): 2501–2505. DOI: 10.1002/ajmg.a.31494
32. Posch M.G., Perrot A., Schmitt K., Mittelhaus S., Esenwein E.M., Stiller B., Geier C., Dietz R., Gessner R., Ozcelik C., Berger F. Mutations in GATA4, NKX2.5, CRELD1, and BMP4 are infrequently found in patients with congenital cardiac septal defects. Am J Med Genet A 2008, 146А (2): 251–253.
33. Wang J., Luo X.-J., Xin Y.-F., Liu Y., Liu Z.-M., Wang Q., Yang Y.-Q. Novel GATA6 Mutations Associated with Congenital Ventricular Septal Defect or Tetralogy of Fallot. DNA and Cell Biology 2012; 31(11): 1610–1617. DOI: 10.1089/ dna.2012.1814
34. Li C., Li X., Pang S., Chen W., Qin X., Huang W., Yan B. Novel and Functional DNA Sequence Variants within the GATA6 Gene Promoter in Ventricular Septal Defects. Int J Mol Sci 2014; 15(7): 12677–12687. DOI: 10.3390/ijms150712677
35. Eindhoven J.A., Bosch A.E., Jansen P.R., Boersma E., Roos-Hesselink J.W. The usefulness of brain natriuretic peptide in complex congenital heart disease: a systematic review. J Am Coll Cardiol 2012; 60(21): 2140–2149. DOI: 10.1016/ j.jacc.2012.02.092
36. Zhang Q., Gong F.Q., Zhu W.H., Xie C.H., Zhang Y.Y, Ying L.Y. Correlation between rs198388 and rs198389 polymorphismsin brainnatriuretic peptide (NPPB) gene and susceptibility to congenital heart diseases in a Chinese population. Int J Clin Exper Med 2015; 8(10): 19162–19166.
37. NewtonCheh C., Larson M.G., Vasan R.S., Levy D., Bloch K.D., Surti A., Guiducci C. et al. Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nat Genet 2009; 41(3): 348–353. DOI: 10.1038/ng.328
38. Ellis K.L., NewtonCheh C., Wang T.J., Frampton C.M., Doughty R.N., Whalley G.A., Ellis C.J. et al. Association of genetic variation in the natriuretic peptide system with cardiovascular outcomes. J Mol Cell Cardiol 2011; 50(4): 695–701. DOI: 10.1016/j.yjmcc.2011.01.010
39. Chen M., Chen X., Guo Y., Shi R., Zhang G. Brain natriuretic peptide rs198388 polymorphism and essential hypertension in Hunan Han people. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2010; 35(12): 1207–1213. DOI: 10.3969/j.issn.1672– 7347.2010.12.001
40. Gorący I., Dawid G., Skonieczna-Żydecka K., Kaczmarczyk M., Łoniewska B., Gorący J. Association of genetic variation in the natriuretic peptide system and left ventricular mass and blood pressure in newborns. Kardiologia polska 2015; 73(5): 366–372.
41. AagaardTillery K.M., Grove K., Bishop J., Ke X., Fu Q., McKnight R., Lane R.H. Developmental origins of disease and determinants of chromatin structure: Maternal diet modifies the primate fetal epigenome. J Mol Endocrinol 2008; 41(2): 91–102. DOI: 10.1677/JME-08-0025
42. Kumar H., Lund R., Laiho A., Lundelin K., Ley R.E., Isolauri E., Salminen S. Gut microbiota as an epigenetic regulator: pilot study based on whole-genome methylation analysis. mBio 2014; 5(6): 02113–14. DOI:10.1128/mBio.02113-14
43. Khaitov R.M., Kofiadi I.A., Alekseev L.P. Role of immunogenetics in addressing fundamental and applied tasks of personalized medicine. Medicina jekstremal’nyh situacij 2016; 3(57): 9–24. (In Russ)
44. Sepiashvili R.I. The autonomous immune system of the brain. Allergologija i immunologija 2015; 16 (1): 91– 100. (in Russ)
45. Xue S., Yang J., Yao F., Xu L., Fan L. Recurrent spontaneous abortions patients have more -14 bp/+14 bp heterozygotes in the 3’UT region of the HLA-G gene in a Chinese Han population. Tissue Antigens 2007; 1: 153–155.
46. Shankarkumar U., Shankarkumar A., Chedda Z., Ghosh K. Role of 14-bp deletion/insertion polymorphism in exon 8 of the HLA-G gene in recurrent spontaneous abortion patients. J Hum Reprod Sci 2011; 4(3): 143–146. DOI:10.4103/0974-1208.92289
47. Fan W., Li S., Huang Z., Chen Q. Relationship between HLA-G polymorphism and susceptibility to recurrent miscarriage: A meta-analysis of non-family-based studies. J Ass Reprod Genet 2014; 31(2): 173–184. DOI:10.1007/s10815-013-0155-2
48. Mandò C., Pileri P., Mazzocco M.I., Lattuada D., Zolin A., Plebani M., Massari M., Calabrese S., Milani S., Cetin I. Maternal and fetal HLA-G 14 bp gene polymorphism in pregnancy-induced hypertension, preeclampsia, intrauterine growth restricted and normal pregnancies. J Ma-tern Fetal Neonatal Med 2016; 29(9): 1509-1514. DOI: 10.3109/14767058.2015.1052398
49. Nair R.R., Khanna A., Singh K. Association of GSTT1 and GSTM1 polymorphisms with early pregnancy loss in an In-dian population and a meta-analysis. Reprod Biomed Online 2013; 26(4): 313–322. DOI: 10.1016/j.rbmo.2012.12.004
50. Li X., Liu Z., Deng Y., Li S., Mu D., Tian X., Zhu J. Modification of the association between maternal smoke exposure and congenital heart defects by polymorphisms in glutathione S-transferase genes. Sci Rep 2015; 5: 14915. DOI:10.1038/srep14915
51. Cresci M. Maternal and Paternal Environmental Risk Factors, Metabolizing GSTM1 and GSTT1 Polymorphisms, and Congenital Heart Disease. Am J Cardiol 2011; 108(11): 1625–1631. DOI: 10.1016/j.amjcard.2011.07.022
52. Lazarev K. Yu., Braiko O.P., Golubtsov V.I., Shvetsov Ya.D., Polonikov A.V. Molecular genetic analysis of Val432Leu polymorphisms of the gene CYP1B1, G590A of the NAT2 and C3435T gene of the ABCB1 gene in children with an isolated atrial septal defect in the Krasnodar Territory. Nauchnye vedomosti BelGU. Meditsina. Farmacija 2013; 18(161): 152–157. (in Russ)
53. Braiko O.P., Lazarev K. Yu., Polonikov A.V., Golubtsov V.I., Shvetsov Ya.D. Molecular genetic analysis of Val432Leu polymorphism of the gene CYP1B1 and G590A of the NAT2 gene in children with an isolated defect of the interventricular septum in the Krasnodar Territory. Kubanskij nauchnyj medicinskij vestnik 2013; 5: 52–55. (in Russ)
54. Shvetsov Ya.D., Lazarev K.Yu., Bushueva O. Yu., Braiko OP, Golubtsov V.I., Polonikov A.V. Study of the association of polymorphism I462V gene cyp1a1 with the development of a congenital defect of the inter-ventricular septum of the heart in the Krasnodar Territory. Nauchnye vedomosti BelGU. Meditsina. Farmacija 2015; 10(207): 108–112. (in Russ)
55. Liu L., Wang H.-D., Cui C.-Y., Wu D., Li T., Fan, T.-B., Wang, C.-Z. Application of array-comparative genomic hybridization in tetralogy of Fallot. Medicine 2016; 95(49): e5552. DOI:10.1097/MD.0000000000005552.
56. Peters T.H., Sharma V., Yilmaz E., Mooi W.J., Bogers A.J., Sharma H.S. DNA microarray and quantitative analysis reveal enhanced myocardial VEGF expression with stunted angio-genesis in human tetralogy of Fallot. Cell Biochem Biophys 2013; 67(2): 305-316. DOI: 10.1007/s12013-013-9710-9
Review
For citations:
Shabaldin A.V., Tsepokina A.V., Shmulevich S.A., Tabakaev M.Yu., Shabaldina E.V. Influence of the social, medicinal and environmental factors upon the development of sporadic congenital heart diseases. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2018;63(1):14-21. (In Russ.) https://doi.org/10.21508/1027-4065-2018-63-1-14-21